1 Allgemeines

$$(u \cdot v)' = u' \cdot v + u \cdot v' \qquad (\frac{u}{v})' = \frac{u' \cdot v - u \cdot v'}{v^2} \qquad \int u' \cdot v \, dx = u \cdot v - \int u \cdot v' \, dx \qquad \frac{dy(x(t))}{dt} = y'(x(t)) \cdot x'(t)$$

$$\frac{d\sin(x)}{dt} = \cos(x) \qquad \frac{d\cos(x)}{dt} = -\sin(x) \qquad \frac{d\tan(x)}{dx} = \frac{1}{\cos^2(x)} \qquad \frac{d\ln(|x|)}{dx} = \frac{1}{x}$$

 $cos(x) \approx 1$ und $sin(x) \approx x$ bei kleinem x in rad

$$e^{jx} = \cos(x) + j\sin(x) \qquad j = \sqrt{-1} \qquad |z_1 \cdot z_2| = |z_1| \cdot |z_2| \text{ und } z_1 \cdot z_1^* = |z_1|^2 \text{ mit } z_1, z_2 \in \mathbb{C}$$

$$e^{jx} + e^{-jx} = 2 \cdot \cos(x) \qquad e^{jx} - e^{-jx} = 2j \cdot \sin(x) \qquad e^x + e^{-x} = 2 \cdot \cosh(x) \qquad e^x - e^{-x} = 2 \cdot \sinh(x)$$

$$\log_b r = \frac{\log_a r}{\log_b b} \qquad \log(ab) = \log(a) + \log(b) \qquad \log(\frac{a}{b}) = \log(a) - \log(b) \qquad \log(a^b) = b \cdot \log(a)$$

$$y \qquad \cos(\alpha) = \frac{x}{r} \qquad \sin(\alpha) = \frac{y}{r} \qquad \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{y}{x}$$

$$1 \operatorname{rad} = \frac{360^{\circ}}{2\pi}$$
 $\alpha_{grad} = \frac{180^{\circ}}{\pi} \cdot \alpha_{rad}$ $\alpha_{rad} = \frac{\pi}{180^{\circ}} \cdot \alpha_{grad}$

$$\cos(x) = \cos(-x)$$
 $-\sin(x) = \sin(-x)$ $-\arctan(x) = \arctan(-x)$ $\sin(x) = \frac{\sin(x)}{x}$

$$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) \qquad \sin(a) \cdot \cos(b) = \frac{1}{2} \cdot (\sin(a - b) + \sin(a + b))$$

$$\sin(a) \cdot \sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$
 $\cos(a) \cdot \cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$

$$\sin(a) \pm \sin(b) = 2 \cdot \sin(\frac{a \pm b}{2}) \cdot \cos(\frac{a \mp b}{2})$$

$$\cos(a) + \cos(b) = 2 \cdot \cos(\frac{a+b}{2}) \cdot \cos(\frac{a-b}{2}) \qquad \cos(a) - \cos(b) = -2 \cdot \sin(\frac{a+b}{2}) \cdot \sin(\frac{a-b}{2})$$

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - c \cdot b \qquad \det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - gec - hfa - idb$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{a \cdot d - c \cdot b} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \qquad \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \cdot \begin{pmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix}$$

Die Inverse einer symmetrischen Matrix ist auch symmetrisch.

Größenordnungen:

¹Wer Fehler findet teilt mir diese bitte über robert.uhl@rwth-aachen.de mit, damit ich diese korrigieren kann.

$\mathbf{2}$ Wechselstromrechnung

 $\text{Impedanz: } \underline{Z} = R + j \cdot X = \underline{\underline{U}} \qquad \text{Admittanz: } \underline{Y} = G + j \cdot B = \underline{\underline{I}} \qquad \omega = 2\pi \cdot f$

 $\underline{Z}_R = R$ $\underline{Z}_C = \frac{1}{j \cdot \omega \cdot C} = j \cdot \frac{-1}{\omega \cdot C} = j \cdot X_C$ $\underline{Z}_L = j \cdot \omega \cdot L = j \cdot X_L$

Scheitelwert: $\underline{\hat{U}}, \underline{\hat{I}}$ Effektivwert: $\underline{U} = \frac{\underline{\hat{U}}}{\sqrt{2}}, \underline{I} = \frac{\underline{\hat{I}}}{\sqrt{2}}$ Phasenverschiebung: $\varphi = \varphi_u - \varphi_i$

Reihenschaltung: $\underline{Z}_{ges} = \underline{Z}_1 + \underline{Z}_2$ und $\underline{Y}_{ges} = \frac{\underline{Y}_1 \cdot \underline{Y}_2}{\underline{Y}_1 + \underline{Y}_2} = \left(\frac{1}{\underline{Y}_1} + \frac{1}{\underline{Y}_2}\right)^{-1}$

Parallelschaltung: $\underline{Z}_{ges} = \frac{\underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2} = \left(\frac{1}{Z_1} + \frac{1}{Z_2}\right)^{-1}$ und $\underline{Y}_{ges} = \underline{Y}_1 + \underline{Y}_2$

komplexe Leistung: $\underline{S} = \underline{U} \cdot \underline{I}^* = P + j \cdot Q$ Scheinleistung: $S = |\underline{S}| = \sqrt{P^2 + Q^2}$

Q>0: induktiv Q<0: kapazitiv Leistungsfaktor: $\cos(\varphi)=\frac{P}{S}$ $\tan(\varphi)=\frac{Q}{P}$ $\sin(\varphi)=\frac{Q}{S}$

Spannungsteiler: $\underline{U}_1 = \underline{U}_{ges} \cdot \frac{\underline{Z}_1}{\underline{Z}_1 + \underline{Z}_2}$ Stromteiler: $\underline{I}_1 = \underline{I}_{ges} \cdot \frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$

2.1 Drehstrom

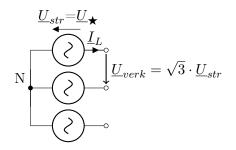
$$\underline{S}_{qes} = 3 \cdot \underline{S}_R$$
 $\underline{a} = e^{j \cdot 120^{\circ}} = e^{j \cdot \frac{2\pi}{3}} \text{ mit } 1 + \underline{a}^2 + \underline{a} = 0$

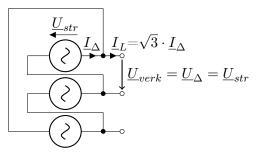
$$\underline{U}_R = U_R$$
 $\underline{U}_S = \underline{a}^2 \cdot \underline{U}_R$ $\underline{U}_T = \underline{a} \cdot \underline{U}_R$ $\underline{I}_R = I_R$ $\underline{I}_S = \underline{a}^2 \cdot \underline{I}_R$ $\underline{I}_T = \underline{a} \cdot \underline{I}_R$

Dreieck-Stern-Umwandlung (symmetrisches System): $\underline{Z}_{\bigstar} = \frac{1}{3} \cdot \underline{Z}_{\Delta}$ $\underline{Y}_{\bigstar} = 3 \cdot \underline{Y}_{\Delta}$

Nennspannung \underline{U}_n (z.B. 400kV) entspricht den Außenleiterspannungen $\underline{U}_{verk} = \underline{U}_{RS}, \underline{U}_{ST}, \underline{U}_{RT}$

Nennspannung, Bemessungsspannung (rated): $\underline{U}_r, \underline{U}_n$ $\underline{U}_\Delta = \sqrt{3} \cdot \underline{U}_\bigstar$ und $\underline{I}_L = \sqrt{3} \cdot \underline{I}_\Delta$





komplexe Drehstromleistung: $\underline{S} = 3 \cdot \underline{U}_R \cdot \underline{I}_R^*$

$$P = \sqrt{3} \cdot U_r \cdot I_r \cdot \cos(\varphi)$$
 $Q = \sqrt{3} \cdot U_r \cdot I_r \cdot \sin(\varphi)$

Bemessungsscheinleistung: $S_r = 3 \cdot \frac{U_r}{\sqrt{2}} \cdot I_r = \sqrt{3} \cdot U_r \cdot I_r$

z.B. Industriebetrieb: $(R_B \text{ und } X_B \text{ parallel})$

 $R_B = \frac{U_n^2}{P_B}$ mit verketteter Spannung U_n $X_B = \frac{U_n^2}{Q_B} = \frac{U_n^2}{P_B \cdot \tan(\arccos(\cos(\varphi_B)))}$

$$X_B = \frac{U_n^2}{Q_B} = \frac{U_n^2}{P_B \cdot \tan(\arccos(\cos(\varphi_B)))}$$

Blindstrom abgeben: C (übererregter Generator) Blindstrom aufnehmen: L (untererregter Generator)

induktiver Verbraucher: $\varphi_L > 0$, $Q_L > 0$ kapazitiver Verbraucher: $\varphi_C < 0, Q_C < 0$

3 Transformator

Schaltgruppe	Übersetzung $\underline{\ddot{u}}$
Yy0	$\frac{w_{OS}}{w_{US}} \cdot e^{j0^{\circ}}$
Dy5	$\frac{1}{\sqrt{3}} \frac{w_{OS}}{w_{US}} \cdot e^{j150^{\circ}}$
Yd5	$\sqrt{3} \frac{w_{OS}}{w_{US}} \cdot e^{j150^{\circ}}$
Yz5	$\frac{2}{\sqrt{3}} \frac{w_{OS}}{w_{US}} \cdot e^{j150^{\circ}}$

Windungszahlverhältnis (Strangspannungen): $\ddot{u}_{str} = \frac{\underline{U}_{OS,str}}{\underline{U}_{US,str}} = \frac{w_{OS}}{w_{US}}$

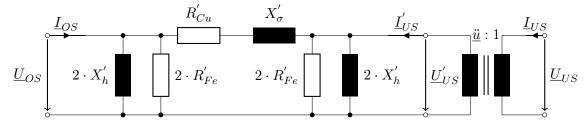
komplexes Übersetzungsverhältnis (Klemmenspannungen):

$$\underline{\ddot{u}} = \underline{\underline{U}_{OS}}_{\underline{U}_{US}} = \ddot{u} \cdot e^{j \cdot k \cdot \frac{\pi}{6}}$$

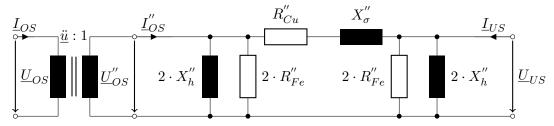
$$\frac{\underline{I}_{OS}}{\underline{I}_{US}} = \frac{1}{\underline{\ddot{u}}^*}$$

$$\frac{\underline{Z}_{OS}}{\underline{Z}_{US}} = \underline{\ddot{u}}^2$$

 π -Ersatzschaltbild (auf die Primärseite bezogen): Klemmenspannungen und Außenleiterströme



 π -Ersatzschaltbild (auf die Sekundärseite bezogen): Klemmenspannungen und Außenleiterströme



Elemente des Ersatzschaltbildes:

- Hauptreaktanz: X_h
- Streureaktanz/Kurzschlussreaktanz: X_{σ}
- Eisenwiderstand R_{Fe}
- Wicklungswiderstand R_{Cu}

3.1 Bestimmung der Elemente des Ersatzschaltbildes

Leerlaufversuch:

mit Bemessungsspannung $U_{r,OS}$, liefert Eisenverlustleistung $P_{Fe,r}$ und Leerlaufstrom $I_{0,OS}$

$$R'_{Fe} pprox rac{U^2_{r,OS}}{P_{Fe,r}} \qquad R''_{Fe} pprox rac{U^2_{r,US}}{P_{Fe,r}}$$

$$X_h' pprox \frac{U_{r,OS}}{\sqrt{3} \cdot I_{0,OS}}$$
 $X_h'' pprox \frac{U_{r,US}}{\sqrt{3} \cdot I_{0,US}}$

Bei $X_h \ll R_{Fe}$ ist diese Näherung zulässig, sonst:

$$X_h' \approx \left(\sqrt{\frac{3 \cdot I_{0,OS}^2}{U_{r,OS}^2} - \frac{1}{(R_{Fe}')^2}}\right)^{-1} \qquad X_h'' \approx \left(\sqrt{\frac{3 \cdot I_{0,US}^2}{U_{r,US}^2} - \frac{1}{(R_{Fe}'')^2}}\right)^{-1}$$

Kurzschlussversuch:

Bemessungsstrom I_r in kurzgeschlossener Wicklung durch an anderer Wicklung angelegte Bemessungskurzschlussspannung U_{kr} mit relativer Kurzschlussspannung $u_{kr} = \frac{U_{kr}}{U_r} \cdot \sqrt{3}$ und Kurzschlussverlusten $P_{Cu,r}$

$$R'_{Cu} \approx P_{Cu,r} \cdot \left(\frac{U_{r,OS}}{S_r}\right)^2 \qquad R''_{Cu} \approx P_{Cu,r} \cdot \left(\frac{U_{r,US}}{S_r}\right)^2$$
$$X'_{\sigma} \approx u_{kr} \cdot \frac{U_{r,OS}^2}{S_r} \qquad X''_{\sigma} \approx u_{kr} \cdot \frac{U_{r,US}^2}{S_r}$$

Bei $X_{\sigma} \gg R_{Cu}$ ist diese Näherung zulässig, sonst:

$$X'_{\sigma} \approx \sqrt{\left(u_{kr} \cdot \frac{U_{r,OS}^2}{S_r}\right)^2 - (R'_{Cu})^2} \qquad X''_{\sigma} \approx \sqrt{\left(u_{kr} \cdot \frac{U_{r,US}^2}{S_r}\right)^2 - (R''_{Cu})^2}$$

Zwei Transformatoren im Parallelbetrieb:

Doppelte Eisen- und halbe Kupferverluste

Eisen:
$$P_{Fe,r} \sim U^2$$
 Kupfer: $P_{Cu,r} \sim I^2$

$$\frac{I_{OS,T1}}{I_{OS,T2}} = \frac{u_{kr,T2}}{u_{kr,T1}} \cdot \frac{S_{r,T1}}{S_{r,T2}} \; (u_{kr} \; \text{sollten m\"{o}glichst gleich sein!})$$

Übertragungsverluste:

$$P_{V,2 \text{ Trafos}} = 2 \cdot P_{Fe,r} + \frac{1}{2} \cdot P_{Cu,r} \cdot \left(\frac{S}{S_r}\right)^2$$

$$P_{V,1 \text{ Trafos}} = P_{Fe,r} + P_{Cu,r} \cdot \left(\frac{S}{S_r}\right)^2$$

Bemessungsscheinleistung: $S_r = \sqrt{3} \cdot U_{r,OS} \cdot I_{r,OS} = \sqrt{3} \cdot U_{r,US} \cdot I_{r,US}$

Transformator mit Stufenschalter:

Einprägen einer variablen Zusatzspannung

Winkel der Zusatzspannung:

- Längsregelung: $\alpha = 0^{\circ}$
- Schrägregelung: $\alpha = 60^{\circ}$
- Querregelung: $\alpha = 90^{\circ}$

4 Freileitungen und Kabel

Modell der Drehstromleitung:

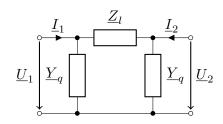
Leitungskenngrößen:

• Widerstandsbelag R'

• Ableitbelag G'

 \bullet Induktivitätsbelag L'

• Kapazitätsbelag C'



Ausbreitungskoeffizient: $\gamma = \sqrt{(R'+j\cdot\omega\cdot L')\cdot(G'+j\cdot\omega\cdot C')} = \alpha+j\cdot\beta$

Wellenwiderstand: $\underline{Z}_W = \sqrt{\frac{R' + j \cdot \omega \cdot L'}{G' + j \cdot \omega \cdot C'}}$ $G' = \frac{P'_{V,ab}}{U_n^2}$ $\left[\frac{S}{km}\right]$

Längsimpedanz: $\underline{Z}_l = \underline{Z}_W \cdot \sinh(\underline{\gamma} \cdot l)$

Queradmittanz: $\underline{Y}_q = \frac{1}{\underline{Z}_W} \cdot \tanh(\underline{\gamma} \cdot \frac{l}{2})$

Verlustlose Leitung: (bei Hochspannungsleitungen 110kV $\leq U_n \leq$ 380kV) es gilt $G' \ll \omega \cdot C'$ und $R' \ll \omega \cdot L'$

Ausbreitungskoeffizient: $\gamma \approx j \cdot \omega \cdot \sqrt{L' \cdot C'} = j \cdot \beta$ $\left[\frac{\text{rad}}{\text{km}}\right]$ bzw. $\left[\frac{\circ}{\text{km}}\right]$

Wellenwiderstand: $\underline{Z}_W \approx \sqrt{\frac{L'}{C'}}$ [Ω]

Längsimpedanz: $\underline{Z}_l \approx j \cdot \underline{Z}_W \cdot \sin(\beta \cdot l)$

Queradmittanz: $\underline{Y}_q \approx \frac{j}{\underline{Z}_W} \cdot \tan(\beta \cdot \frac{l}{2})$

bei $l\ll 1500\,\mathrm{km}\colon \underline{Z}_l$ induktiv und \underline{Y}_q kapazitiv

Verhältnis Spannungen: $\frac{U_2}{U_1} = \left(\sqrt{\cos^2(\beta \cdot l) + n^2 \cdot \sin^2(\beta \cdot l)}\right)^{-1}$ bei $P_{Last} = 3 \cdot n \cdot P_{nat}$

Ferranti-Effekt: (lange leerlaufende Leitung) $U_2 = U_1 \cdot \frac{1}{\cos(\beta \cdot l)} > 1$ kompensiert durch Querinduktivität oder Längskapazität (besser, da P_{nat} vergrößert)

elektrisch kurze Leitung: (Freileitung < 400 km, Kabel, $\gamma \cdot l \ll 1, \, \underline{Y}_q \ll \underline{Y}_l)$

Längsimpedanz: $\underline{Z}_l \approx \underline{Z}_W \cdot \gamma \cdot l = (R' + j \cdot \omega \cdot L') \cdot l$

Queradmittanz: $\underline{Y}_q \approx \frac{1}{\underline{Z}_W} \cdot \underline{\gamma} \cdot \frac{l}{2} = (G' + j \cdot \omega \cdot C') \cdot \frac{l}{2}$

Schwachlast (Leerlauf): Längselemente vernachlässigen, kapazitiv Starklast (Kurzschluss): Querelemente vernachlässigen, induktiv

Eingangsimpedanzen: $\underline{Z}_W = \sqrt{\underline{Z}_{10} \cdot \underline{Z}_{1k}}$ Leerlaufeingangsimpedanz: $\underline{Z}_{10} = \frac{\underline{Z}_W}{\tanh(\underline{\gamma} \cdot l)}$

Kurzschlusseingangsimpedanz: $\underline{Z}_{1k} = \underline{Z}_W \cdot \tanh(\gamma \cdot l)$

Natürliche Leistung:

Leitung überträgt nur die durch den Abschluss mit $\underline{Z}_W = \sqrt{\frac{L'}{C'}}$ geforderte Wirkleistung, Q = 0

$$\underline{S}_{nat} = \frac{U_n^2}{\underline{Z}_W^*} \qquad P_{nat} = \frac{U_n^2}{\underline{Z}_W} = U_n^2 \cdot \sqrt{\frac{C'}{L'}}$$

Übertragungsgrenzen:

- Spannungsunterschied (Blindleistungsfluss): $\Delta U = U_1 U_2 \le \Delta U_{max} = \pm 10\%$
- Leitungswinkel (Wirkleistungsfluss): $\Delta \vartheta = \vartheta_1 \vartheta_2 \le \Delta \vartheta_{max} = 20^{\circ}$

Allgemeine Wirk- und Blindleistungsübertragung: $P \approx \frac{U_1 \cdot U_2}{X_L} \cdot \sin(\vartheta_1 - \vartheta_2) \qquad Q \approx \frac{U_1}{X_L} \cdot (U_1 - U_2) \qquad \text{verkettete Spannungen } U_1, U_2 \text{ und } \frac{R}{X} \ll 1$

$$P \approx \frac{U_1 \cdot U_2}{V_1} \cdot \sin(\vartheta_1 - \vartheta_2)$$
 $Q \approx \varepsilon$

$$Q \approx \frac{U_1}{X_T} \cdot (U_1 - U_2)$$

Blindleistungsbedarf: $\Delta Q = Q_{ind} - Q_{kap}$ ausgeglichen bei übertragener Leistung $\underline{S}_L = P_{nat}$ $Q_{ind} \approx \frac{1}{2} \cdot \frac{S_L^2}{P_{nat}} \cdot \sin(2 \cdot \beta \cdot l)$ $Q_{kap} \approx \frac{1}{2} \cdot P_{nat} \cdot \sin(2 \cdot \beta \cdot l)$

Ladeleistung: im Leerlauf aufgenommene kapazitive Blindleistung $Q_{kap} \approx 3 \cdot U^2 \cdot \omega \cdot C' \cdot l$

Kompensationseinrichtungen:

Ziel: Leitung mit ausgeglichener Blindleistungsbilanz betreiben, also P_{nat} der Leitung an die zu übertragende Leistung \underline{S}_L anpassen, indem die Leitungsinduktivität und -kapazität angepasst werden.

Längskompensationsgrad (in Reihe): k_l Querkompensationsgrad (Parallel): k_q

$$\tilde{P}_{nat} = P_{nat} \cdot \sqrt{\frac{1 - k_q}{1 - k_l}} \qquad \quad \tilde{\beta} = \beta \cdot \sqrt{(1 - k_q) \cdot (1 - k_l)} \qquad \text{Vorsicht mit rad und } \circ !$$

- übernatürliche belastete Leitung $(S_L > P_{nat})$: $k_l > 0$, Längskapazität
- unternatürliche belastete Leitung $(S_L < P_{nat})$: $k_q > 0$, Querinduktivität

Spannungsstabilität:

Die Spannung am Ende einer Leitung sinkt mit zunehmender zu übertragender Wirk- und vor allem induktiver Blindleistung ab. Eine Leitung hat bei einer Spannung U_1 eine von der Länge bestimmte physikalische Grenzübertragungsfähigkeit, eine höhere Übertragungsleistung ist physikalisch wegen fehlender Spannungsstabilität nicht möglich (instabile Betriebszustände).

maximal übertragbare Leistung: $P_{L,max} = \frac{P_{nat}}{\sin(2\cdot\beta\cdot l)} \cdot \frac{\cos(\varphi_L)}{1+\sin(\varphi_L)}$

bei
$$P_L = P_{L,max}$$
: $U_2 \approx \frac{U_1}{\sqrt{2}}$ (viel zu niedrig!)

Berechnung des Kapazitätsbelages:

Einleitersystem: $C' = \frac{\overline{Q'}}{\overline{U}} = \frac{2\pi \cdot \varepsilon_0}{\ln(\frac{2 \cdot h}{a})}$ mit mittlerer Höhe $h \approx h_m - 0.7 \cdot f_m$

Aufhänghöhe Mast h_m , Durchhang in Feldmitte f_m , Radius des Einzelleiters ρ

symmetrische Freileitung: $C' = \frac{Q'}{\overline{U}} = \frac{2\pi \cdot \varepsilon_0}{\ln(\frac{d}{z})}$ mit mittlerem Leitungsabstand $d = \sqrt[3]{d_{12} \cdot d_{23} \cdot d_{31}}$

Ersatzradius Bündelleiter: $\rho_B = \sqrt[n]{n \cdot \rho \cdot R^{n-1}}$ mit Bündelradius R, Anzahl Teilleiter n

Berechnung des Induktivitätsbelages:

Einleitersystem mit Rückleitung in Luft: (Leiterschleife in Luft)

$$L' = \frac{\mu_0}{\pi} \cdot \ln \left(\frac{D}{\rho \cdot e^{-\frac{1}{4}}} \right)$$
 mit Abstand Hin- und Rückleiter D

Einleitersystem mit Rückleitung in Erde:
$$L'=\frac{\mu_0}{\pi}\cdot\ln\left(\frac{\delta_E}{\rho\cdot e^{-\frac{1}{4}}}\right)$$

Erdstromtiefe: (Abstand eines fiktiven Rückleiters in Luft der zur gleichen Induktivität führt) $\delta_E = \frac{1,85}{\sqrt{\mu_0 \cdot \omega \cdot \kappa_E}} \text{ mit Bodenleitfähigkeit } \kappa_E$

Widerstandsbelag der Erde: $R_E' = \frac{\mu_0 \cdot \omega}{8}$

symmetrische Freileitung:
$$L' = \frac{\mu_0}{2\pi} \cdot \ln\left(\frac{d}{\rho \cdot e^{-\frac{1}{4}}}\right)$$

Reduktion von Bündelleitern bei symmetrischer Freileitung: $L' = \frac{\mu_0}{2\pi} \cdot \ln \left(\frac{d}{\rho_B \cdot e^{-\frac{1}{4n}}} \right)$

5 Synchrongenerator

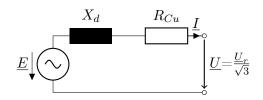
belastungsunabhängige Drehzahl n, Polpaarzahl p, Netzfrequenz f mit $f = n \cdot p$

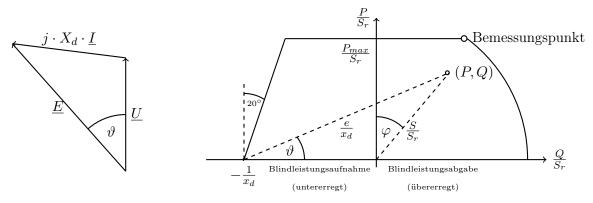
bei Beschleunigung wird der Polradwinkel ϑ größer!

5.1 Vollpolmaschine/Turbogenerator

 $p \in \{1, 2\}$, hohe Drehzahlen (z.B. Dampfturbine)

 $\underline{U} = \underline{E} - j \cdot X_d \cdot \underline{I} = E \cdot e^{j \cdot \vartheta} - j \cdot X_d \cdot \underline{I} \quad \text{ Polradspannung } \underline{E}, \text{ Polradwinkel } \vartheta, \text{ Längsreaktanz } X_d$





Betriebspunkt zulässig: $\cos(\varphi) > \cos(\varphi_r) \iff \varphi < \varphi_r$

(fiktive) Bemessungsreaktanz:
$$X_r = \frac{U_r}{\sqrt{3} \cdot I_r} = \frac{U_r^2}{S_r}$$

bezogene synchrone Reaktanz: $x_d = \frac{X_d}{X_r} \ (\approx 2 \dots 3)$ $X_d = x_d \cdot \frac{U_r^2}{S_r}$ auf Primärseite eines Transformators bezogen: $X_d = \ddot{u}^2 \cdot x_d \cdot \frac{U_r^2}{S_r}$

$$P_{max} = S_r \cdot \cos(\varphi_r)$$

$$\begin{split} &\frac{P}{S_r} = \frac{1}{x_d} \cdot \frac{E \cdot U}{\left(\frac{U_r}{\sqrt{3}}\right)^2} \cdot \sin(\vartheta) = \frac{e \cdot u}{x_d} \cdot \sin(\vartheta) \\ &\frac{Q}{S_r} = \frac{1}{x_d} \cdot \frac{E \cdot U}{\left(\frac{U_r}{\sqrt{3}}\right)^2} \cdot \cos(\vartheta) - \frac{U^2}{\left(\frac{U_r}{\sqrt{3}}\right)^2} = \frac{e \cdot u}{x_d} \cdot \cos(\vartheta) - \frac{u^2}{x_d} \\ &P_G(\vartheta) = \frac{\sqrt{3} \cdot E \cdot U_r}{X_d} \cdot \sin(\vartheta) \end{split}$$

5.2 Schenkelpolgenerator

hohe Polpaarzahl, geringe Drehzahl (z.B. Wasserkraftwerke), deutlich asymmetrischerer Aufbau als Turbogenerator, zusätzlich Querreaktanz X_q

Reluktanzmoment: Leistungsabgabe auch ohne Erregung möglich ($\underline{E} = 0$)

$$\frac{P}{S_r} = \frac{e \cdot u}{x_d} \cdot \sin(\vartheta) + \frac{u^2}{2} \cdot \left(\frac{1}{x_q} - \frac{1}{x_d}\right) \cdot \sin(2 \cdot \vartheta)$$

$$\frac{Q}{S_r} = \frac{e \cdot u}{x_d} \cdot \cos(\vartheta) - \frac{u^2}{x_d} - \frac{u^2}{2} \cdot \left(\frac{1}{x_q} - \frac{1}{x_d}\right) \cdot (1 - \cos(2 \cdot \vartheta))$$

5.3 Kriterium für stabilen Generatorbetrieb

$$\left.\frac{dP(\vartheta)}{d\vartheta}\right|_{\vartheta=\vartheta_0}>0$$
stationärer Zustand ϑ_0

Turbogenerator:
$$\frac{dP(\vartheta)}{d\vartheta}\Big|_{\vartheta=\vartheta_0} = S_r \cdot \frac{e \cdot u}{x_d} \cdot \cos(\vartheta_0) > 0$$
 für $\vartheta_0 < 90^\circ$ erfüllt

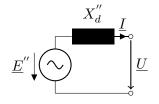
Schenkelpolgenerator:
$$\frac{dP(\vartheta)}{d\vartheta}\Big|_{\vartheta=\vartheta_0} = S_r \cdot \frac{e \cdot u}{x_d} \cdot \cos(\vartheta_0) + S_r \cdot u^2 \cdot \left(\frac{1}{x_q} - \frac{1}{x_d}\right) \cdot \cos(2 \cdot \vartheta_0) > 0$$

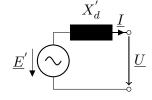
3 Grenzen:

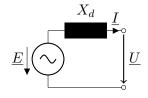
- Wirkleistung (P)
- \bullet Erwärmung der Erregerwicklung (Q>0)
- Stabilität (Q < 0)

5.4 Generatormodell Kurzschluss

- subtransient: $\underline{E}'' = \underline{U} + j \cdot X_d'' \cdot \underline{I}$
- transient: $\underline{E}' = \underline{U} + j \cdot X_d' \cdot \underline{I}$
- stationär: $\underline{E} = \underline{U} + j \cdot X_d \cdot \underline{I}$







6 Lastflussberechnung

komplexe Knotenadmittanzmatrix: $\vec{\underline{I}} = \underline{\mathbf{Y}} \cdot \vec{\underline{U}}$

Nebendiagonalelemente: $\underline{Y}_{ij} = -\sum_{m \in ij} \underline{Y}_{l,m}$ (Längsadmittanzen zwischen Knoten i und j)

Hauptdiagonalelemente: $\underline{Y}_{ii} = \sum_{m \in i} (\underline{Y}_{q,m} + \underline{Y}_{l,m})$ (Admittanzen vom Knoten i wegführend)

Verbraucher mit konstanter Impedanz: in die Knotenadmittanzmatrix integrieren Verbraucher mit konstanter Leistung oder passive Knoten: PQ-Knoten (U_k und ϑ_k unbekannt) Congretoren mit Spannungsragelung: PH Knoten (Q_k und ϑ_k unbekannt)

Generatoren mit Spannungsregelung: PU-Knoten (Q_k und ϑ_k unbekannt) Slack-Knoten: Generator oder Netzeinspeisung mit $\vartheta_S = 0^{\circ}$ gewählt (P_S und Q_S unbekannt)

 $\textbf{Lastflussgleichungen:}\ \underline{\vec{S}} = 3 \cdot \mathbf{diag}(\underline{\vec{U}}) \cdot \underline{\vec{I}}^* = 3 \cdot \mathbf{diag}(\underline{\vec{U}}) \cdot \underline{\mathbf{Y}}^* \cdot \underline{\vec{U}}^*$

6.1 Gleichstromlastfluss/Wirklastflussberechnung:

kleine Phasenwinkeldifferenzen, gleiche Knotenspannungen

Lineares Gleichungssystem: $\mathbf{B}'\cdot\vec{\vartheta}=\frac{1}{U_b^2}\cdot\vec{P}$ mit $U_i\approx\frac{U_b}{\sqrt{3}}$ und ϑ_i in rad

Hauptdiagonalelemente: $B'_{ii} = \sum_{j \neq i} |\underline{Y}_{ij}|$ (addiere Nebendiagonalelemente der Zeile)

Nebendiagonalelemente: $B'_{ij} = -|\underline{Y}_{ij}|$ (Längsadmittanzen zwischen Knoten i und j)

Slack-Zeile und Slack-Spalte in der Matrix und den Vektoren streichen.

Wirkleistungsfluss von Knoten i zu Knoten k: $P_{ik} = \frac{U_b^2}{X_{ik}} \cdot (\vartheta_i - \vartheta_k)$

maximal zulässiger Wirkleistungsfluss: $P_{max} = \sqrt{3} \cdot U_b \cdot I_{therm}$

7 symmetrische Kurzschlussstromberechnung

Kurzschlussstrom besteht aus Wechselstrom und auf Null abklingendem Gleichstrom

Anfangskurzschlusswechselstrom I''_k (subtransient) Dauerkurzschlussstrom I_k (stationär)

generatornaher Kurzschluss: $I_k < I_k''$ generator
ferner Kurzschluss: $I_k \approx I_k''$

Die Abklingzeitkonstante wird durch die Impedanz der Kurzschlussbahn bestimmt.

Anfangskurzschlusswechselstromleistung/Kurzschlussleistung: $S_k'' = \sqrt{3} \cdot U_n \cdot I_k''$

Auswahl Transformator zwischen Spannungsebenen: $1,1 \cdot \frac{S_r}{u_{kr}} < S_k''$

7.1 Vereinfachungen nach DIN VDE 0102

- Querglieder aller Zweige vernachlässigen
- Stufenschalter aller Transformatoren in Mittelstellung
- Wirkwiderstände in Längsgliedern bei $U_n > 1\,\mathrm{kV}$ vernachlässigen, wenn $\frac{R}{X} \leq 0.3$ für die gesamte Kurzschlussimpedanz (also Impedanz aller einzelnen Netzzweige) gilt
- einheitliche Polradspannungen/Knotenspannungen: $E''=U_i=c\cdot \frac{U_n}{\sqrt{3}}$ mit c=1,1 bei $U_n>1\,\mathrm{kV}$ und sonst c=1,0
- nur große motorische Verbraucher berücksichtigen; Asynchronmotoren vernachlässigen, wenn $\frac{I''_{k,nurAsync}}{I''_{k,ohneAsync}} = \frac{I''_{k,nurAsync}}{I''_{k,nurAsync}} \approx \frac{I''_{k,nurAsync}}{I''_{k}} < 0.05$
- nicht vernachlässigbare Systemumgebung (Nachbarnetz) als Ersatzgenerator mit $X_N = \frac{1}{\ddot{u}^2} \cdot c \cdot \frac{U_n^2}{S_{\iota}''}$ (ggf. Impedanz Netzkuppeltransformatoren beachten!)
- \bullet Umwandlung Generator-ESB in Stromquelle $\tilde{I}_G = \frac{E''}{j \cdot X_d''}$ parallel zu $Y_d'' = \frac{1}{X_d''}$

Asynchronmotor:

Anlass-/Kurzschlussstrom I_{an} größer als der Betriebsstrom

$$\begin{split} I_{r,Mot} &= \frac{P_{Mot,ges}}{\sqrt{3} \cdot U_{r,Mot} \cdot \cos(\varphi) \cdot \eta} \\ X_{Mot} &= \frac{1}{\frac{I_{an}}{I_{r,Mot}}} \cdot \frac{U_{r,Mot}^2}{S_{r,Mot}} = \frac{1}{\frac{I_{an}}{I_{r,Mot}}} \cdot \frac{U_{r,Mot}}{\sqrt{3} \cdot I_{r,Mot}} = \frac{1}{\frac{I_{an}}{I_{r,Mot}}} \cdot \frac{U_{r,Mot}^2}{P_{Mot,ges}} \cdot \cos(\varphi) \cdot \eta \end{split}$$

7.2 Superpositionsverfahren

(Spannung am Fehlerort wird mit der Lastflussberechnung ermittelt)

Vermeidung der mehrfachen Inversion von $\underline{\mathbf{Y}}_F^{-1} = \underline{\mathbf{Z}}_F$

 $\underline{\mathbf{Y}}$ und $\underline{\mathbf{Z}}$ einmalig aus Netz, Generatoren und Verbrauchern aufstellen

Spannungsquellen in Stromquellen umwandeln, diese streichen/Spannungsquellen kurzschließen

Knotenspannung vorhergehender Normalbetriebszustand: $\vec{\underline{U}}^V$

fehlerbedingte Änderung: $\Delta \underline{\vec{U}}$

Knotenspannung im Fehlerfall: $\underline{\vec{U}} = \underline{\vec{U}}^V - \Delta \underline{\vec{U}}$

Kurzschlussstrom am Fehlerort: $\underline{I}_{k,j}'' = \frac{\underline{U}_{j}^{V}}{\underline{Z}_{ij} + \underline{Z}_{F}}$ mit i.d.R. Fehlerimpedanz $\underline{Z}_{F} = 0$

Zweigstrom vorhergehender Normalbetriebszustand: \underline{I}_{ik}^V fehlerbedingte Stromänderung (Fehler am Knoten j): $\Delta \underline{I}_{ik} = -\underline{Y}_{ik} \cdot \frac{\underline{Z}_{ij} - \underline{Z}_{kj}}{\underline{Z}_{jj} + \underline{Z}_F} \cdot \underline{U}_j^V$

mit $\Delta \underline{I}_{ik} = -\Delta \underline{I}_{ki}$

Teilkurzschlussströme: $\underline{I}_{k,ik}'' = \underline{I}_{ik}^V - \Delta \underline{I}_{ik}$ von Knoten i zu Knoten k

7.3 Ersatzspannungsquellenverfahren

(Spannung am Fehlerort approximiert)

keine Überlagerung mit Zweigströmen des Normalbetriebszustandes Vernachlässigung aller Lastadmittanzen \underline{Y}_L einheitlich an allen Knoten $\underline{U}_j^V = c \cdot \frac{U_n}{\sqrt{3}}$ wählen

Kurzschlussstrom am Fehlerort: $\underline{I}_{k,j}'' = \frac{\underline{U}_{j}^{V}}{\underline{Z}_{jj} + \underline{Z}_{F}}$ mit i.d.R. Fehlerimpedanz $\underline{Z}_{F} = 0$

synchrone Reaktanzen der Generatoren in den Hauptdiagonalelementen von $\underline{\mathbf{Y}}$ berücksichtigen

Teilkurzschlussströme: $\underline{I}''_{k,ik} = \underline{Y}_{ik} \cdot \frac{\underline{Z}_{ij} - \underline{Z}_{kj}}{\underline{Z}_{jj} - \underline{Z}_F} \cdot c \cdot \frac{U_n}{\sqrt{3}}$ von Knoten i zu Knoten k

Schritte:

- 1. ESB (Generatoren und Einspeisungen entfallen, X bleibt bestehen) mit umgekehrter Ersatzspannungsquelle an der Fehlerstelle mit $U_F = c \cdot \frac{U_n}{\sqrt{3}}$ und I_k'' aus dem Netz
- 2. Elemente (X und R) des ESB berechnen, Bezug auf eine Spannungsebene
- 3. $\frac{R}{X}$ -Verhältnis aller Netzzweige auf $\frac{R}{X}<0.3$ prüfen. Wenn gültig, Wirkwiderstände vernachlässigen!
- 4. Gesamtadmittanz aus allen Zweigimpedanzen berechnen: $Y_{ges} = \frac{1}{Z_1} + \ldots + \frac{1}{Z_n}$
- 5. Anfangswechselstrom: $I_k'' = c \cdot \frac{U_n}{\sqrt{3}} \cdot Y_{ges}$
- 6. Teilkurzschlussstrom: $I_{k,Zweig}'' = \frac{c}{\sqrt{3}} \cdot \frac{U_n}{X_{Zweig}}$
- 7. Asynchronmotoren vernachlässigbar bei $\frac{I''_{k,nurAsync}}{I''_k-I''_{k,nurAsync}} \approx \frac{I''_{k,nurAsync}}{I''_k} < 0.05$