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1 Natural Coupling

e circuit composed of b branches and n nodes
e calculation of 2b unknowns (voltage and current of each branch)

explicit variable: known, e.g. x = 2

implicit variable: unknown, to calculate, e.g. z? = 2%

1.1 Nodal Analysis (NA)

one node («0») as reference potential (known)

voltage of each of n — 1 nodes & to calculate

n — 1 equations to solve

best option for circuit simulation

information of electronic circuit fully contained in voltage

G - ¥ = § with nodal conductance matrix G and current injection vector §

1.1.1 Dby inspection

build nodal conductance matrix G and current injection vector s from node equations

1.1.2 matrix stamp
construction of the nodal conductance matrix G and current injection vector s by components

resistance R between nodes i and j:
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1.2 Modified Nodal Analysis (MINA)

extension of NA for modeling ideal voltage sources

important to represent real devices like controlled power supplies

add one equation (voltage between nodes) and one unknown (current through the ideal voltage source)
nodal conductance matrix G with (n — 1 4 vigear) X (n — 1 4 Vigear)

source vector § with (n — 1 4+ vigear) X 1

voltage of nodes and currents of ideal voltage sources Z to calculate

apply matrix stamp for every ideal voltage source

ideal voltage source Vj; between nodes k and I:
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1.3 Solution methods

e Gaussian elimination: solution & by processing G and §
e LU factorization: useful for multiple solutions with fixed G and changing 3 (see resistive companion)

1.4 Controlled sources

e 4 terminal device
e 2 terminals for controlling variable
e 2 terminals for controlled variable

examples:
e small signal representation of transistors
e operational amplifiers
e ideal transformers

1.4.1 Voltage Controlled Current Source (VCCS)

e directly representable in nodal analysis
e characteristic equation: Iy = g - Vi, With trans-conductance g and Vi, =V, — V3,

m o~ 2P matrix stamp:
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1.4.2 Voltage Controlled Voltage Source (VCVS)

e not directly representable in nodal analysis
e characteristic equation: Vi,q = a - Vi with Vg =V, — Vg and Vi =V, =V,
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for nodal analysis:
1. matrix stamp for VCCS with gain g = >
2. matrix stamp for parallel small 1nternal resistance R+ between nodes p and ¢

matrix stamp for modified nodal analysis:
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1.4.3 Current Controlled Current Source (CCCS)

e not directly representable in nodal analysis
o characteristic equation: Iy = 8 - Iy
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for nodal analysis:

1. matrix stamp for VCCS with gain g = Rﬁ

2. matrix stamp for small resistance R,,, between nodes m and n

matrix stamp for modified nodal analysis:
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1.4.4 Current Controlled Voltage Source (CCVS)

e not directly representable in nodal analysis
e characteristic equation: V,q = 7 - Iy, With Vg =V, =V
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for nodal analysis:

1. matrix stamp for VOCS with gain g = z—%—

2. matrix stamp for small resistance R,,, between nodes m and n
3. matrix stamp for small resistance R;,; between nodes p and ¢

matrix stamp for modified nodal analysis:
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2 Linear circuits transient analysis - Resistive companion

e transformation of dynamic elements in a corresponding DC equivalent circuit
e represents an iteration of an integration method

2.1 Integration methods

e integration time step At
e smaller time step is more accurate/better
e explicit method:
— predict the future value of the solution by using information from the previous steps
— may diverge for large time step
— faster calculation
e implicit method
— requires knowledge of a value at the future time step
— always numerically stable/will always converge
— more effort for calculation

2.1.1 Euler Forward (EF)

e assumes function z(¢) is constant between k- At and (k + 1) - At and equal to value z(k - At)
e result: y(k+ 1) = y(k) + «(k) - At
e explicit method

2.1.2 Euler Backward (EB)

e assumes function x(t) is constant between k- At and (k + 1) - At and equal to value z((k + 1) - At)
o result: y(k+ 1) =y(k) +x(k+1)- At
e implicit method

2.1.3 Trapezoidal Rule (TR)

assumes function z(t) is linear between k- At and (k + 1) - At with values z(k - At) and z((k + 1) - At)
. _ z(k)+x(k+1

result: y(k+ 1) = y(k) + % <At

implicit method

combination of Euler Forward and Euler Backward for better accuracy

2.2 Resistive companion formulation for an inductance

i(t) i(k+1)

di
o) =L- G2 7=

|~

u(t) L i) = i(to) + ;j vk +1) Ip(k)

e Euler Forward: i(k + 1) = i(k) + 4L - v(k) = I (k) + 0 - v(k + 1) (ideal current source)

e Euler Backward: i(k+ 1) = (k) + &t vk +1)=I.(k)+ G -v(k+1)

. Trapezmdal Rule i(k+1) =&t vk +1)+ (i(k) + 5t -v(k)) = G- v(k + 1) + I(k)
with G, = £t and I1,(k) = i(k) + G - v(k)

2.3 Resistive companion formulation for a capacitance

i(t) i(k+1)
SR ity=c- %0 +—R.C
H0) E—c o(t) = v(to) + & - j ok +1) Ic(k)

e Euler Forward: v(k 4+ 1) = v(k) + % <i(k) (ideal voltage source)
e Euler Backward: v(k +1) =v(k) + 2t -i(k+1)

C
= ik+1)=L vk+1) - & v():GC v(k +1) — Io(k)
e Trapezoidal Rule v(k: +1) =v(k) + 5 - ( (k + 1) +i(k))
<:>z(k+1) v(k+1) — (i(k) + 25 -v(k)) = Go - v(k+ 1) — Io(k)
with Go = 25 and Io(k) =i(k)+ Ge ( )



3 Signal Coupling

3.1 State space

system state:
Amount of information at any time ¢y that, together with all inputs for ¢ > ¢y, uniquely determines the behaviour of the
system for all ¢t > ¢y. State variables must be continuous and linearly representable.

state equations:
Z(t) = f(&,u,t) explicit first order differential equations

output equations:

y(t) = g(@,ut)

linear time-invariant system:
Z(t)=A-Z(t) + B - u(t)
y(t)=C-Z(t) + D - u(t)

3.2 Integration method - Predictor and corrector

improves accuracy compared with Euler-Forward or Euler-Backward

z = f(z,t)

t — gyt

predictor: (like Euler Forward)
g1 = o +dyr - At with dy; = f(z,tr)

corrector: (like Trapezoidal Rule)
Tpy1 = T + W - At with dys = f(%x41,tk41)

3.3 Automatic state equations for circuits

combines signal coupling and natural coupling

uses branch parameters and circuit topology (natural coupling)

automatically generates state space model (signal coupling)

numerical integration technique can be selected after formulation, which simplifies programming of variable time-step
integration techniques

e simple development and implementation of simulation

node incidence matrix A,: ((n) x (b))
e each row corresponds to a node (n)
e cach column corresponds to a branch (b) and contains two non-zero elements (1 and —1)
e for positive terminal of branch j connected to node %, a;; =1
e for negative terminal of branch j connected to node 7, a;; = —1
e A, -7, =0 with branch currents 7, (from KCL)

A, = A, = [ Tn—1)x(n-1) ‘ An-1)x(b-nt1) (by matriz operations)
0(1)x(n-1) 0(1)x(b—n+1)
basic loop matrix By: (b —n+1) x (b))
e each row corresponds to a mesh in the circuit (b - n + 1)
e cach column corresponds to a branch (b)
e —1 and 1 represents the direction of the branch voltage in the mesh
e B, v, :AG with branch voltages Uy,

Ean

e i, = B -7, with independent branch currents 7,

branch model: (not suitable for representing all systems)

Li €; Cl

T




state variables: (length of single sub-vectors is equal to number of branches)

7= 30}
_Zm
input variables:
i= Zbr
| Ebr
output variables:
- %7'
v= m}
resulting state space matrices:
(Tr: Ta‘ jbr é‘br
. 0 M7 . BT i. | MT 0
At B [ ML
fo| -LpUPy | Lo (4 4L) | 0 | -L;'-B,
e T
C— Uy [ 0 ‘ BZ“
. | Py -M—Ly, Bl -L;'-P, \ (thr + LLp) -BY — Ly, -BY L' - (r, + 4L,)
jhr é‘br
oo [0 | 0
| O \ I-Ly, B -L;'-B,

L,=B, L, - BbT L, has to be invertible! (minimum one branch with L)

M: m;; = 1 if capacitor j is in the branch i, else m;; =0 ((b) x (capacitors))

Jc:f;cdt @c:MT'Jbr
diagonal resistance matrix ry,:

diagonal entries correspond to branch resistances r;

branch inductance matrix Ly,:
e self-inductances L; (diagonal entries)
e mutual-inductances M;; (off-diagonal entries)

branch potential coefficient matrix Py,:
diagonal entries for reciprocal capacitances % of corresponding branch i



4 Diakoptics

dividing (tearing) the original network into a number of isolated subnetworks

matrix of coefficients for each small network is inverted independently

solution of the full network obtained from matrices of subnetworks

no current or voltage sources in the removed branches, only basic components allowed

removed branches must not form a closed loop or contain nodes not included in the remaining network

as many variables as were in the original problem plus as many additional variables as there are removed branches

advantages:

reduction of computational effort (n?)

reduction of needed storage

economical

solution is obtained directly by a number of definite steps without any approximations or iterations

disadvantages:

n additional calculations for n removed branches, may overweight the advantages of this method
decouple the network manually

notation:

oUW

10.

o
\

oUW e

10.

index a: nodal quantities
index (: mesh quantities
index 1: removed branch quantities

mesh current analysis

known voltage sources EB in branches

unknown mesh currents 73 (to calculate)

build equivalent network with equivalent voltage sources é€jg

build removed network with equivalent current sources 7, and voltages across removed branches i,

build % from mesh currents #3:

7y = Cyp - 1g With connection matrix Cyg

build €5 from voltages across removed branches ti:

€g = Bgy - Uy = —Ctﬁw - Uy

build mesh current equations of equivalent network: 5

Zgsgs -1 = Eg + €3 with block diagonal impedance matrix Zgg of divided subnetworks

build relation between currents and voltages of removed network:

v = Yy - Uy

build fundamental equations of Diakoptics:

Yoy - Uy = Cyp - 1

build solution for unknown mesh currents 7:

5 _m-1 (f -1 7-1 B

=25 (Eﬁ ~CL, Yyl Cus-Z5h- Eg)
Ry 71

with wa = Yl/ﬂ/) + C¢5 . Zﬁﬁ . C%w

nodal voltage analysis

known current injections I, in nodes

unknown nodal voltages ¥, (to calculate)

build equivalent network with equivalent current sources T

build removed network with equivalent voltage sources €, and currents through removed branches 7,
build 7, from currents through removed branches 7:

z:’a = Cqy - 7y with connection matrix C.

build éw from voltages across removed branches ¥:

€y = Bya - Ua = —Cfm - Vg

build nodal voltage equations of equivalent network:

Yoo Ua = fa + 7, with block diagonal admittance matrix Y .o of divided subnetworks
build relation between voltages and currents of removed network:

€y = Ly - Ty

build fundamental equations of Diakoptics:

Ly Ty = —Cfm - Uy

Yoo T = In + Cay -

build solution for unknown nodal voltages ¥,:

T, =Y 1. (fa —Cay -2y, CL, - Y1 «fa>

with wa = Zdﬂl) + Ct o -?;& . Cad,



5 Latency Insertion Method (LIM)

latency generates update equations for branch currents and node voltages

optimally efficient algorithm, computational effort linear to size of system

no matrix inversion needed, component by component solved independently

could be parallelized, which increases simulation speed

maximum time step At,,q, < min (\ /Lij; - CZ-)

useable as connection tool: many blocks solved with other methods, LIM used for connecting them
order of calculation: [[© — Vz =]I' - V3 =12 — ..

requirements for topology:
e cach branch must contain an inductance, otherwise a small inductance is inserted
e each node must provide a capacitive path to ground, otherwise a small shunt capacitance is added

leap-frog algorithm:
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mutual inductance:
e leads to matrix connecting old and new values of both currents
e matrix has to be inverted only once

non-linear component:
e handle non-linear behaviour i = f(v) of circuit elements by using iterative Newton-Raphson algorithm
e in branch: V3 = f‘l(Ii"jH)

e at node: I" = f(ViTH_%)

e iterations only on non-linear branches or nodes needed, non-linearity solved locally
e huge computational advantage compared to MNA for non-linear circuit components

other circuit elements:
e represented by resistive companion model
e e.g. branch capacitance or shunt inductance (Euler Backward)



6 Real-time simulation

difficult to test a power system device under real conditions or in its working environment
replace some simulation models of a system by one or several physical components
controller HIL: low power levels with 10V

power HIL: absorbs/sinks real power

Soft Real-time:
average response time of system is met

Hard Real-time:
requires that guaranteed response time is met

Firing Signal Averaging (FSA) method:
e averages external very high frequency signal to simulation time step
e else it can’t be tracked by the simulator
e e.g. switching signal of power electronics converter

conservation of energy at system’s boundaries:

for Power Hardware In the Loop (PHIL)

power electronics interface between HUT (Hardware Under Test) and ROS (Rest Of System)

ROS as a model in the simulator

stability problems/erroneous results may occur due to delays in communication between interface and simulator
power electronics interface must be much fast than HUT to be transparent, otherwise interferences possible

[ ]
[ ]
[ ]
[ ]
algorithm for conservation of energy at system’s boundary:

e power electronics hardware interface based on time-variant first order approximation (TFA) of dynamics of HUT
e this compensates for delays introduced by D/A- and A /D-conversion as well as computation



