1 Natural Coupling

- circuit composed of b branches and n nodes
- calculation of $2 b$ unknowns (voltage and current of each branch)
explicit variable: known, e.g. $x=2$
implicit variable: unknown, to calculate, e.g. $x^{2}=2^{x}$

1.1 Nodal Analysis (NA)

- one node ($« 0 »$) as reference potential (known)
- voltage of each of $n-1$ nodes \vec{x} to calculate
- $n-1$ equations to solve
- best option for circuit simulation
- information of electronic circuit fully contained in voltage
- $\mathbf{G} \cdot \vec{x}=\vec{s}$ with nodal conductance matrix \mathbf{G} and current injection vector \vec{s}

1.1.1 by inspection

build nodal conductance matrix \mathbf{G} and current injection vector \vec{s} from node equations

1.1.2 matrix stamp

construction of the nodal conductance matrix \mathbf{G} and current injection vector \vec{s} by components
resistance R between nodes i and j :

$$
\mathbf{G}_{s u b}={ }^{i}{ }_{j}\left[\begin{array}{cc}
i & j \\
\frac{1}{R} & \frac{-1}{R} \\
\frac{-1}{R} & \frac{1}{R}
\end{array}\right]
$$

ideal current source I between nodes i and j : (injecting in node i)

$$
\vec{s}_{s u b}={ }_{j}^{i}\left[\begin{array}{c}
I \\
-I
\end{array}\right]
$$

real voltage source V with in series resistance R between nodes i and j : (with + at node i)

$$
\mathbf{G}_{\text {sub }}={ }^{i}{ }_{j}^{i}\left[\begin{array}{cc}
i & j \\
{ }_{j} & \frac{1}{R} \\
\frac{-1}{R} \\
\frac{-1}{R} & \frac{1}{R}
\end{array}\right] \text { and } \vec{s}_{\text {sub }}=\begin{aligned}
& i \\
& j
\end{aligned}\left[\begin{array}{c}
\frac{V}{R} \\
-\frac{V}{R}
\end{array}\right]
$$

1.2 Modified Nodal Analysis (MNA)

- extension of NA for modeling ideal voltage sources
- important to represent real devices like controlled power supplies
- add one equation (voltage between nodes) and one unknown (current through the ideal voltage source)
- nodal conductance matrix \mathbf{G} with $\left(n-1+v_{\text {ideal }}\right) \times\left(n-1+v_{\text {ideal }}\right)$
- source vector \vec{s} with $\left(n-1+v_{\text {ideal }}\right) \times 1$
- voltage of nodes and currents of ideal voltage sources \vec{x} to calculate
- apply matrix stamp for every ideal voltage source
ideal voltage source $V_{k l}$ between nodes k and l :

$$
\mathbf{G}_{\text {sub }}={ }_{l}^{k}\left[\begin{array}{cc|c}
k & l \\
l & 0 & 1 \\
0 & 0 & -1 \\
\hline 1 & -1 & 0
\end{array}\right], \vec{x}_{\text {sub }}=\begin{gathered}
k \\
l
\end{gathered}\left[\begin{array}{c}
0 \\
0 \\
\hline I_{k l}
\end{array}\right] \text { and } \vec{s}_{\text {sub }}=\begin{aligned}
& k \\
& l
\end{aligned}\left[\begin{array}{c}
0 \\
0 \\
\hline V_{k l}
\end{array}\right]
$$

[^0]
1.3 Solution methods

- Gaussian elimination: solution \vec{x} by processing \mathbf{G} and \vec{s}
- LU factorization: useful for multiple solutions with fixed \mathbf{G} and changing \vec{s} (see resistive companion)

1.4 Controlled sources

- 4 terminal device
- 2 terminals for controlling variable
- 2 terminals for controlled variable
examples:
- small signal representation of transistors
- operational amplifiers
- ideal transformers

1.4.1 Voltage Controlled Current Source (VCCS)

- directly representable in nodal analysis
- characteristic equation: $I_{p q}=g \cdot V_{m n}$ with trans-conductance g and $V_{m n}=V_{m}-V_{n}$

matrix stamp:

$$
\mathbf{G}_{\text {sub }}={ }^{p}{ }_{q}\left[\begin{array}{cc}
m & n \\
g & -g \\
-g & g
\end{array}\right]
$$

1.4.2 Voltage Controlled Voltage Source (VCVS)

- not directly representable in nodal analysis
- characteristic equation: $V_{p q}=\alpha \cdot V_{m n}$ with $V_{p q}=V_{p}-V_{q}$ and $V_{m n}=V_{m}-V_{n}$

for nodal analysis:

1. matrix stamp for VCCS with gain $g=\frac{-\alpha}{R_{\text {int }}}$
2. matrix stamp for parallel small internal resistance $R_{i n t}$ between nodes p and q
matrix stamp for modified nodal analysis:
$\mathbf{G}_{\text {sub }}=\begin{gathered}m \\ n \\ p \\ q\end{gathered}\left[\begin{array}{cccc|c}m & n & p & q & \\ & & & & 0 \\ & & & & 0 \\ & & & & 1 \\ & & & & \\ \hline-\alpha & \alpha & 1 & -1 & 0\end{array}\right]$ and $\vec{x}_{\text {sub }}=\left[\begin{array}{l} \\ \hline I_{p q}\end{array}\right]$

1.4.3 Current Controlled Current Source (CCCS)

- not directly representable in nodal analysis
- characteristic equation: $I_{p q}=\beta \cdot I_{m n}$

for nodal analysis:

1. matrix stamp for VCCS with gain $g=\frac{\beta}{R_{m n}}$
2. matrix stamp for small resistance $R_{m n}$ between nodes m and n
matrix stamp for modified nodal analysis:
$\mathbf{G}_{\text {sub }}=\begin{gathered} \\ m \\ n \\ p\end{gathered}\left[\begin{array}{cccc|c}m & n & p & q & \\ & & & & 1 \\ \\ & & & & -1 \\ \beta \\ & & & & -\beta \\ \hline 1 & -1 & 0 & 0 & 0\end{array}\right]$ and $\vec{x}_{\text {sub }}=\left[\begin{array}{l} \\ \hline I_{m n}\end{array}\right]$

1.4.4 Current Controlled Voltage Source (CCVS)

- not directly representable in nodal analysis
- characteristic equation: $V_{p q}=r \cdot I_{m n}$ with $V_{p q}=V_{p}-V_{q}$

for nodal analysis:

1. matrix stamp for VCCS with gain $g=\frac{\beta}{R_{m n} \cdot R_{\text {int }}}$
2. matrix stamp for small resistance $R_{m n}$ between nodes m and n
3. matrix stamp for small resistance $R_{\text {int }}$ between nodes p and q
matrix stamp for modified nodal analysis:

$$
\mathbf{G}_{\text {sub }}=\begin{gathered}
\\
m \\
n \\
p \\
q
\end{gathered}\left[\begin{array}{cccc|cc}
m & n & p & q \\
& & & & 1 & 0 \\
& & & & -1 & 0 \\
& & & & 0 & 1 \\
& 0 & -1 \\
\hline 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & -r & 0
\end{array}\right] \text { and } \vec{x}_{s u b}=\left[\begin{array}{c}
\\
\hline I_{m n} \\
I_{p q}
\end{array}\right]
$$

2 Linear circuits transient analysis - Resistive companion

- transformation of dynamic elements in a corresponding DC equivalent circuit
- represents an iteration of an integration method

2.1 Integration methods

- integration time step Δt
- smaller time step is more accurate/better
- explicit method:
- predict the future value of the solution by using information from the previous steps
- may diverge for large time step
- faster calculation
- implicit method
- requires knowledge of a value at the future time step
- always numerically stable/will always converge
- more effort for calculation

2.1.1 Euler Forward (EF)

- assumes function $x(t)$ is constant between $k \cdot \Delta t$ and $(k+1) \cdot \Delta t$ and equal to value $x(k \cdot \Delta t)$
- result: $y(k+1)=y(k)+x(k) \cdot \Delta t$
- explicit method

2.1.2 Euler Backward (EB)

- assumes function $x(t)$ is constant between $k \cdot \Delta t$ and $(k+1) \cdot \Delta t$ and equal to value $x((k+1) \cdot \Delta t)$
- result: $y(k+1)=y(k)+x(k+1) \cdot \Delta t$
- implicit method

2.1.3 Trapezoidal Rule (TR)

- assumes function $x(t)$ is linear between $k \cdot \Delta t$ and $(k+1) \cdot \Delta t$ with values $x(k \cdot \Delta t)$ and $x((k+1) \cdot \Delta t)$
- result: $y(k+1)=y(k)+\frac{x(k)+x(k+1)}{2} \cdot \Delta t$
- implicit method
- combination of Euler Forward and Euler Backward for better accuracy

2.2 Resistive companion formulation for an inductance

$$
\begin{aligned}
& v(t)=L \cdot \frac{d i(t)}{d t} \quad \tau=\frac{L}{R} \\
& i(t)=i\left(t_{0}\right)+\frac{1}{L} \cdot \int_{t_{0}}^{t} v(\tau) d \tau
\end{aligned} \quad \stackrel{\Im}{i(k+1)} v(k+1) \square G_{L} \quad \square \quad I_{L}(k)
$$

- Euler Forward: $i(k+1)=i(k)+\frac{\Delta t}{L} \cdot v(k)=I_{L}(k)+0 \cdot v(k+1) \quad$ (ideal current source)
- Euler Backward: $i(k+1)=i(k)+\frac{\Delta t}{L} \cdot v(k+1)=I_{L}(k)+G_{L} \cdot v(k+1)$
- Trapezoidal Rule: $i(k+1)=\frac{\Delta t}{2 L} \cdot v(k+1)+\left(i(k)+\frac{\Delta t}{2 L} \cdot v(k)\right)=G_{L} \cdot v(k+1)+I_{L}(k)$ with $G_{L}=\frac{\Delta t}{2 L}$ and $I_{L}(k)=i(k)+G_{L} \cdot v(k)$

2.3 Resistive companion formulation for a capacitance

$$
\begin{aligned}
& i(t)=C \cdot \frac{d v(t)}{d t} \quad \tau=R \cdot C \\
& v(t)=v\left(t_{0}\right)+\frac{1}{C} \cdot \int_{t_{0}}^{t} i(\tau) d \tau
\end{aligned}
$$

- Euler Forward: $v(k+1)=v(k)+\frac{\Delta t}{C} \cdot i(k) \quad$ (ideal voltage source)
- Euler Backward: $v(k+1)=v(k)+\frac{\Delta t}{C} \cdot i(k+1)$ $\Longleftrightarrow i(k+1)=\frac{C}{\Delta t} \cdot v(k+1)-\frac{C}{\Delta t} \cdot v(k)=G_{C} \cdot v(k+1)-I_{C}(k)$
- Trapezoidal Rule: $v(k+1)=v(k)+\frac{\Delta t}{2 C} \cdot(i(k+1)+i(k))$
$\Longleftrightarrow i(k+1)=\frac{2 C}{\Delta t} \cdot v(k+1)-\left(i(k)+\frac{2 C}{\Delta t} \cdot v(k)\right)=G_{C} \cdot v(k+1)-I_{C}(k)$ with $G_{C}=\frac{2 C}{\Delta t}$ and $I_{C}(k)=i(k)+G_{C} \cdot v(k)$

3 Signal Coupling

3.1 State space

system state:

Amount of information at any time t_{0} that, together with all inputs for $t \geq t_{0}$, uniquely determines the behaviour of the system for all $t \geq t_{0}$. State variables must be continuous and linearly representable.

state equations:

$\dot{\vec{x}}(t)=\vec{f}(\vec{x}, \vec{u}, t) \quad$ explicit first order differential equations
output equations:
$\vec{y}(t)=\vec{g}(\vec{x}, \vec{u}, t)$

linear time-invariant system:

$\dot{\vec{x}}(t)=\mathbf{A} \cdot \vec{x}(t)+\mathbf{B} \cdot \vec{u}(t)$
$\vec{y}(t)=\mathbf{C} \cdot \vec{x}(t)+\mathbf{D} \cdot \vec{u}(t)$

3.2 Integration method - Predictor and corrector

improves accuracy compared with Euler-Forward or Euler-Backward
$\dot{x}=f(x, t)$
$t_{k} \rightarrow t_{k+1}$
predictor: (like Euler Forward)
$\hat{x}_{k+1}=x_{k}+d y_{1} \cdot \Delta t \quad$ with $d y_{1}=f\left(x_{k}, t_{k}\right)$
corrector: (like Trapezoidal Rule)
$x_{k+1}=x_{k}+\frac{d y_{1}+d y_{2}}{2} \cdot \Delta t \quad$ with $d y_{2}=f\left(\hat{x}_{k+1}, t_{k+1}\right)$

3.3 Automatic state equations for circuits

- combines signal coupling and natural coupling
- uses branch parameters and circuit topology (natural coupling)
- automatically generates state space model (signal coupling)
- numerical integration technique can be selected after formulation, which simplifies programming of variable time-step integration techniques
- simple development and implementation of simulation
node incidence matrix $\mathbf{A}_{a}:((n) \times(b))$
- each row corresponds to a node (n)
- each column corresponds to a branch (b) and contains two non-zero elements (1 and -1)
- for positive terminal of branch j connected to node $i, a_{i j}=1$
- for negative terminal of branch j connected to node $i, a_{i j}=-1$
- $\mathbf{A}_{a} \cdot \vec{\imath}_{b r}=\overrightarrow{0}$ with branch currents $\vec{\imath}_{b r}$ (from $K C L$)
$\mathbf{A}_{a} \widehat{=} \tilde{\mathbf{A}}_{a}=\left[\begin{array}{c|c}\mathbf{I}_{(n-1) \times(n-1)} & \hat{\mathbf{A}}_{(n-1) \times(b-n+1)} \\ \hline \mathbf{0}_{(1) \times(n-1)} & \mathbf{0}_{(1) \times(b-n+1)}\end{array}\right] \quad$ (by matrix operations)
basic loop matrix $\mathbf{B}_{b}:((b-n+1) \times(b))$
- each row corresponds to a mesh in the circuit $(b-n+1)$
- each column corresponds to a branch (b)
- -1 and 1 represents the direction of the branch voltage in the mesh
- $\mathbf{B}_{b} \cdot \vec{v}_{b r}=\overrightarrow{0}$ with branch voltages $\vec{v}_{b r}$
- $\mathbf{B}_{b}^{T}=\left[\begin{array}{c}-\hat{\mathbf{A}} \\ \mathbf{I}\end{array}\right]$
- $\vec{\imath}_{b r}=\mathbf{B}_{b}^{T} \cdot \vec{\imath}_{x}$ with independent branch currents $\vec{\imath}_{x}$
branch model: (not suitable for representing all systems)

$$
v_{i}=r_{i} \cdot i_{i}+L_{i} \cdot \frac{d i_{i}}{d t}+e_{i}+P_{i} \cdot \int\left(i_{i}+j_{i}\right) d t
$$

state variables: (length of single sub-vectors is equal to number of branches)
$\vec{x}=\left[\begin{array}{l}\vec{q}_{c} \\ \vec{\imath}_{x}\end{array}\right]$
input variables:
$\vec{u}=\left[\begin{array}{l}\vec{y}_{b r} \\ \vec{e}_{b r}\end{array}\right]$
output variables:
$\vec{y}=\left[\begin{array}{l}\vec{l}_{b r} \\ \vec{v}_{b r}\end{array}\right]$
resulting state space matrices:
$\mathbf{A}=\underset{\dot{\vec{q}}_{x}}{\dot{\vec{q}}_{c}}\left[\begin{array}{c|c}\vec{q}_{c} & \vec{\imath}_{x} \\ \mathbf{0} & \mathbf{M}^{T} \cdot \mathbf{B}_{b}^{T} \\ \hline-\mathbf{L}_{x}^{-1} \cdot \mathbf{P}_{x} & -\mathbf{L}_{x}^{-1} \cdot\left(\mathbf{r}_{x}+\frac{d}{d t} \mathbf{L}_{x}\right)\end{array}\right] \quad \mathbf{B}=\frac{\dot{\vec{q}}_{c}}{\dot{\vec{\imath}}_{x}}\left[\begin{array}{c|c}\overrightarrow{\vec{b}}_{b r} & \vec{e}_{b r} \\ \hline \mathbf{\mathbf { M } ^ { T }} & \mathbf{0} \\ \hline \mathbf{0} & -\mathbf{L}_{x}^{-1} \cdot \mathbf{B}_{b}\end{array}\right]$
$\left.\mathbf{C}=\begin{array}{c|c}\vec{\imath}_{b r} \\ \vec{v}_{b r} \\ \mathbf{0} & \vec{\imath}_{c} \\ \hline \mathbf{P}_{b r} \cdot \mathbf{M}-\mathbf{L}_{b r} \cdot \mathbf{B}_{b}^{T} \cdot \mathbf{L}_{x}^{-1} \cdot \mathbf{P}_{x} & \left(\mathbf{r}_{b r}+\frac{d}{d t} \mathbf{L}_{b r}\right) \cdot \mathbf{B}_{b}^{T}-\mathbf{L}_{b r} \cdot \mathbf{B}_{b}^{T} \cdot \mathbf{L}_{x}^{-1} \cdot\left(\mathbf{r}_{x}+\frac{d}{d t} \mathbf{L}_{x}\right)\end{array}\right]$
$\left.\mathbf{D}=\begin{array}{c|c}\vec{v}_{b r} \\ \vec{v}_{b r} \\ \overrightarrow{\vec{l}}_{b r} & \vec{e}_{b r} \\ \mathbf{0} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{I}-\mathbf{L}_{b r} \cdot \mathbf{B}_{b}^{T} \cdot \mathbf{L}_{x}^{-1} \cdot \mathbf{B}_{b}\end{array}\right]$
with:
$\mathbf{r}_{x}=\mathbf{B}_{b} \cdot \mathbf{r}_{b r} \cdot \mathbf{B}_{b}^{T}$
$\mathbf{L}_{x}=\mathbf{B}_{b} \cdot \mathbf{L}_{b r} \cdot \mathbf{B}_{b}^{T}$
\mathbf{L}_{x} has to be invertible! (minimum one branch with L)
$\mathbf{P}_{x}=\mathbf{B}_{b} \cdot \mathbf{P}_{b r} \cdot \mathbf{M}$
$\mathbf{M}: m_{i j}=1$ if capacitor j is in the branch i, else $m_{i j}=0$
$((b) \times($ capacitors $))$
$\vec{q}_{c}=\int \vec{\imath}_{c} d t \quad \vec{q}_{c}=\mathbf{M}^{T} \cdot \vec{q}_{b r}$
diagonal resistance matrix $\mathrm{r}_{b r}$:
diagonal entries correspond to branch resistances r_{i}
branch inductance matrix $\mathbf{L}_{b r}$:

- self-inductances L_{i} (diagonal entries)
- mutual-inductances $M_{i j}$ (off-diagonal entries)
branch potential coefficient matrix $\mathbf{P}_{b r}$:
diagonal entries for reciprocal capacitances $\frac{1}{C_{i}}$ of corresponding branch i

4 Diakoptics

- dividing (tearing) the original network into a number of isolated subnetworks
- matrix of coefficients for each small network is inverted independently
- solution of the full network obtained from matrices of subnetworks
- no current or voltage sources in the removed branches, only basic components allowed
- removed branches must not form a closed loop or contain nodes not included in the remaining network
- as many variables as were in the original problem plus as many additional variables as there are removed branches

advantages:

- reduction of computational effort $\left(n^{3}\right)$
- reduction of needed storage
- economical
- solution is obtained directly by a number of definite steps without any approximations or iterations

disadvantages:

- n additional calculations for n removed branches, may overweight the advantages of this method
- decouple the network manually

notation:

- index α : nodal quantities
- index β : mesh quantities
- index ψ : removed branch quantities

4.1 mesh current analysis

1. known voltage sources \vec{E}_{β} in branches
2. unknown mesh currents $\vec{\imath}_{\beta}$ (to calculate)
3. build equivalent network with equivalent voltage sources $\tilde{\vec{e}}_{\beta}$
4. build removed network with equivalent current sources $\tilde{\vec{\imath}}_{\psi}$ and voltages across removed branches \vec{v}_{ψ}
5. build $\tilde{\vec{\imath}}_{\psi}$ from mesh currents $\vec{\imath}_{\beta}$: $\tilde{\vec{\imath}}_{\psi}=\mathbf{C}_{\psi \beta} \cdot \vec{\imath}_{\beta}$ with connection matrix $\mathbf{C}_{\psi \beta}$
6. build $\tilde{\vec{e}}_{\beta}$ from voltages across removed branches \vec{v}_{ψ} : $\tilde{\vec{e}}_{\beta}=\mathbf{B}_{\beta \psi} \cdot \vec{v}_{\psi}=-\mathbf{C}_{\beta \psi}^{t} \cdot \vec{v}_{\psi}$
7. build mesh current equations of equivalent network: $\tilde{\mathbf{Z}}_{\beta \beta} \cdot \vec{\imath}_{\beta}=\vec{E}_{\beta}+\tilde{\vec{e}}_{\beta}$ with block diagonal impedance matrix $\tilde{\mathbf{Z}}_{\beta \beta}$ of divided subnetworks
8. build relation between currents and voltages of removed network:
$\tilde{\vec{\imath}}_{\psi}=\mathbf{Y}_{\psi \psi} \cdot \vec{v}_{\psi}$
9. build fundamental equations of Diakoptics:
$\tilde{\mathbf{Z}}_{\beta \beta} \cdot \vec{\imath}_{\beta}=\vec{E}_{\beta}-\mathbf{C}_{\beta \psi}^{t} \cdot \vec{v}_{\psi}$ $\mathbf{Y}_{\psi \psi} \cdot \vec{v}_{\psi}=\mathbf{C}_{\psi \beta} \cdot \vec{\imath}_{\beta}$
10. build solution for unknown mesh currents $\vec{\imath}_{\beta}$:

$$
\begin{aligned}
& \vec{\imath}_{\beta}=\tilde{\mathbf{Z}}_{\beta \beta}^{-1} \cdot\left(\vec{E}_{\beta}-\mathbf{C}_{\beta \psi}^{t} \cdot \tilde{\mathbf{Y}}_{\psi \psi}^{-1} \cdot \mathbf{C}_{\psi \beta} \cdot \tilde{\mathbf{Z}}_{\beta \beta}^{-1} \cdot \vec{E}_{\beta}\right) \\
& \text { with } \tilde{\mathbf{Y}}_{\psi \psi}=\mathbf{Y}_{\psi \psi}+\mathbf{C}_{\psi \beta} \cdot \tilde{\mathbf{Z}}_{\beta \beta}^{-1} \cdot \mathbf{C}_{\beta \psi}^{t}
\end{aligned}
$$

4.2 nodal voltage analysis

1. known current injections \vec{I}_{α} in nodes
2. unknown nodal voltages \vec{v}_{α} (to calculate)
3. build equivalent network with equivalent current sources $\tilde{\vec{\imath}}_{\alpha}$
4. build removed network with equivalent voltage sources $\tilde{\vec{e}}_{\psi}$ and currents through removed branches $\vec{\imath}_{\psi}$
5. build $\tilde{\vec{\imath}}_{\alpha}$ from currents through removed branches $\vec{\imath}_{\psi}$: $\tilde{\vec{\imath}}_{\alpha}=\tilde{\mathbf{C}}_{\alpha \psi} \cdot \vec{\imath}_{\psi}$ with connection matrix $\mathbf{C}_{\alpha \psi}$
6. build $\tilde{\vec{e}}_{\psi}$ from voltages across removed branches \vec{v}_{α} : $\tilde{\vec{e}}_{\psi}=\mathbf{B}_{\psi \alpha} \cdot \vec{v}_{\alpha}=-\mathbf{C}_{\psi \alpha}^{t} \cdot \vec{v}_{\alpha}$
7. build nodal voltage equations of equivalent network:
$\tilde{\mathbf{Y}}_{\alpha \alpha} \cdot \vec{v}_{\alpha}=\vec{I}_{\alpha}+\tilde{\vec{\imath}}_{\alpha}$ with block diagonal admittance matrix $\tilde{\mathbf{Y}}_{\alpha \alpha}$ of divided subnetworks
8. build relation between voltages and currents of removed network:
$\tilde{\vec{e}}_{\psi}=\mathbf{Z}_{\psi \psi} \cdot \vec{\imath}_{\psi}$
9. build fundamental equations of Diakoptics:
$\mathbf{Z}_{\psi \psi} \cdot \vec{\imath}_{\psi}=-\mathbf{C}_{\psi \alpha}^{t} \cdot \vec{v}_{\alpha}$
$\tilde{\mathbf{Y}}_{\alpha \alpha} \cdot \vec{v}_{\alpha}=\vec{I}_{\alpha}+\mathbf{C}_{\alpha \psi} \cdot \vec{\imath}_{\psi}$
10. build solution for unknown nodal voltages \vec{v}_{α} :
$\vec{v}_{\alpha}=\tilde{\mathbf{Y}}_{\alpha \alpha}^{-1} \cdot\left(\vec{I}_{\alpha}-\mathbf{C}_{\alpha \psi} \cdot \tilde{\mathbf{Z}}_{\psi \psi}^{-1} \cdot \mathbf{C}_{\psi \alpha}^{t} \cdot \tilde{\mathbf{Y}}_{\alpha \alpha}^{-1} \cdot \vec{I}_{\alpha}\right)$
with $\tilde{\mathbf{Z}}_{\psi \psi}=\mathbf{Z}_{\psi \psi}+\mathbf{C}_{\psi \alpha}^{t} \cdot \tilde{\mathbf{Y}}_{\alpha \alpha}^{-1} \cdot \mathbf{C}_{\alpha \psi}$

5 Latency Insertion Method (LIM)

- latency generates update equations for branch currents and node voltages
- optimally efficient algorithm, computational effort linear to size of system
- no matrix inversion needed, component by component solved independently
- could be parallelized, which increases simulation speed
- maximum time step $\Delta t_{\text {max }}<\min \left(\sqrt{L_{i j} \cdot C_{i}}\right)$
- useable as connection tool: many blocks solved with other methods, LIM used for connecting them
- order of calculation: $\left[I^{0} \rightarrow V^{\frac{1}{2}} \rightarrow\right] I^{1} \rightarrow V^{\frac{3}{2}} \rightarrow I^{2} \rightarrow \ldots$

requirements for topology:

- each branch must contain an inductance, otherwise a small inductance is inserted
- each node must provide a capacitive path to ground, otherwise a small shunt capacitance is added
leap-frog algorithm:

branch algorithm:

$$
\begin{aligned}
& V_{i j}=V_{i}-V_{j}=L_{i j} \cdot \frac{d I_{i j}}{d t}+R_{i j} \cdot I_{i j}-E_{i j} \\
& \Longleftrightarrow V_{i}^{n+\frac{1}{2}}-V_{j}^{n+\frac{1}{2}}=L_{i j} \cdot\left(\frac{I_{i j}^{n+1}-I_{i j}^{n}}{\Delta t}\right)+R_{i j} \cdot I_{i j}^{n}-E_{i j}^{n+\frac{1}{2}} \\
& \Longleftrightarrow I_{i j}^{n+1}=I_{i j}^{n}+\frac{\Delta t}{L_{i j}} \cdot\left(V_{i}^{n+\frac{1}{2}}-V_{j}^{n+\frac{1}{2}}-R_{i j} \cdot I_{i j}^{n}+E_{i j}^{n+\frac{1}{2}}\right)
\end{aligned}
$$

node algorithm:

$$
\begin{aligned}
& \sum_{k} I_{i k}+G_{i} \cdot V_{i}+C_{i} \cdot \frac{d V_{i}}{d t}=H_{i} \\
& \Longleftrightarrow \sum_{k} I_{i k}^{n}+G_{i} \cdot V_{i}^{n+\frac{1}{2}}+C_{i} \cdot\left(\frac{V_{i}^{n+\frac{1}{2}}-V_{i}^{n-\frac{1}{2}}}{\Delta t}\right)=H_{i}^{n} \\
& \Longleftrightarrow V_{i}^{n+\frac{1}{2}}=\frac{\frac{C_{i} \cdot V_{i}^{n-\frac{1}{2}}}{\Delta t}+H_{i}^{n}-\sum_{k} I_{i k}^{n}}{\frac{C_{i}}{\Delta t}+G_{i}}
\end{aligned}
$$

mutual inductance:

- leads to matrix connecting old and new values of both currents
- matrix has to be inverted only once
non-linear component:
- handle non-linear behaviour $i=f(v)$ of circuit elements by using iterative Newton-Raphson algorithm
- in branch: $V^{n+\frac{1}{2}}=f^{-1}\left(I_{i j}^{n+1}\right)$
- at node: $I^{n}=f\left(V_{i}^{n+\frac{1}{2}}\right)$
- iterations only on non-linear branches or nodes needed, non-linearity solved locally
- huge computational advantage compared to MNA for non-linear circuit components
other circuit elements:
- represented by resistive companion model
- e.g. branch capacitance or shunt inductance (Euler Backward)

6 Real-time simulation

- difficult to test a power system device under real conditions or in its working environment
- replace some simulation models of a system by one or several physical components
- controller HIL: low power levels with $\pm 10 \mathrm{~V}$
- power HIL: absorbs/sinks real power

Soft Real-time:

average response time of system is met

Hard Real-time:

requires that guaranteed response time is met
Firing Signal Averaging (FSA) method:

- averages external very high frequency signal to simulation time step
- else it can't be tracked by the simulator
- e.g. switching signal of power electronics converter
conservation of energy at system's boundaries:
- for Power Hardware In the Loop (PHIL)
- power electronics interface between HUT (Hardware Under Test) and ROS (Rest Of System)
- ROS as a model in the simulator
- stability problems/erroneous results may occur due to delays in communication between interface and simulator
- power electronics interface must be much fast than HUT to be transparent, otherwise interferences possible
algorithm for conservation of energy at system's boundary:
- power electronics hardware interface based on time-variant first order approximation (TFA) of dynamics of HUT
- this compensates for delays introduced by D/A- and A/D-conversion as well as computation

[^0]: ${ }^{1}$ please report errors to robert.uhl@rwth-aachen.de

