Einführung

Größe	International	DIN
Istwert / Regelgröße	y	X
Sollwert / Führungsgröße	w	W
Regeldifferenz	e	X_d
Stellgröße	u	Y
Störgröße	z, d, n	Z

Differentialgleichungen

Variation der Konstanten u'(x) + a(x)u(x) = f(x)

$$L_{inh} = e^{-A(x)} \cdot \int e^{A(x)} \cdot f(x) \, dx$$

Laplace-Transformation

• Verschiebungssatz: $\mathcal{L}[x(t-T_t)] = e^{-sT_t} \cdot X(s)$

• Ähnlichkeitssatz: $\mathcal{L}[x(at)] = \frac{1}{a} X\left(\frac{s}{a}\right)$

• Differentiations
satz:
$$\mathcal{L}\left[\frac{\mathrm{d}}{\mathrm{d}t}x(t)\right] = -x(0^-) + s \cdot X(s) ,$$

$$\mathcal{L}\left[\frac{\mathrm{d}^n}{\mathrm{d}t^n}x(t)\right] = s^nX(s) - \sum_{\nu=0}^{n-1} s^\nu x^{(n-1-\nu)}(0^-)$$

• Integrations satz:

$$\mathcal{L}\left[\int_{0}^{t} x(\tau) d\tau\right] = \frac{1}{s} X(s)$$

 $\bullet \;\; {\rm Faltungs satz} :$

$$[x_1(t) * x_2(t)] = X_1(s) \cdot X_2(s)$$

• Grenzwertsätze

$$x(0^{+}) = \lim_{s \to \infty} s \cdot X(s)$$

$$\dot{x}(0^{+}) = \lim_{s \to \infty} -sx(0^{+}) + s^{2} \cdot X(s)$$

$$x(\infty) = \lim_{s \to 0} s \cdot X(s)$$

$$\dot{x}(\infty) = \lim_{s \to 0} s^{2} \cdot X(s)$$

• Partialbruchzerlegung
$$B_{\nu_i} = \frac{1}{(r-i)!} \frac{\mathrm{d}^{r-i}}{\mathrm{d}s^{r-i}} \left. \left((s-s_{\nu})^r \frac{Z(s)}{N(s)} \right) \right|_{s=s_{\nu}}$$

Modellbildung im Frequenzbereich

Impedanzen

TIMP COLORES				
Name	Symbo	l Impedar	$z(Z = \frac{U}{I})$	
Kapazität		$-\frac{1}{Cs}$		
Widerstan	d ———	$-\mid R \mid$		
Induktivit	ät ———	- Ls		
Name	Symbol	Symbol	Impedanz	Impedanz
	(Transl.)	(Rot.)	$(Z_M = \frac{F}{sX})$	$(Z_M = \frac{T}{s\theta})$
Feder	—70000 —		$\frac{K}{2}$	$\frac{K}{2}$
Dämpfer			$\begin{bmatrix} s \\ d \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Trägheit			ms	Js
Newton		•		•

- 1. Newtonsches Gesetz: $\vec{p} = m\vec{v} = \mathrm{const}$
- 2. Newtonsches Gesetz: $\frac{d\vec{p}}{dt} = m\vec{a} = \vec{F}$
- 3. Newtonsches Gesetz: $\vec{F}_T = \vec{F}^{(e)}$

$$\begin{aligned} \textbf{Getriebe} \\ \frac{T_2}{T_1} &= \frac{\omega_1}{\omega_2} = \frac{\theta_1}{\theta_2} = \frac{N_2}{N_1} \end{aligned}$$

Getriebe $\frac{T_2}{T_1} = \frac{\omega_1}{\omega_2} = \frac{\theta_1}{\theta_2} = \frac{N_2}{N_1}$ Transformation: Impedanzen kann man auf die Antriebsseite abbilden, indem man mit $\left(\frac{N_{\rm Antrieb}}{N_{\rm Abtrieb}}\right)^2$ multipliziert. Gleichstrommotor

T_m = K_t · I_a, U_{ind} = K_b · s
$$\theta_m$$

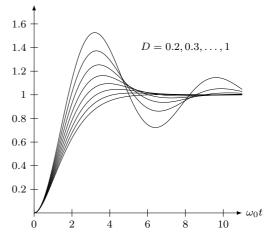
T_m| _{$\omega_{m=0}$} = T_{m,halte} = $\frac{K_t}{R_a}u_a$
 ω_m |_{T_m=0} = $w_{m,leer}$ = $\frac{u_a}{K_b}$

5 Dynamisches Verhalten

Systeme zweiter Ordnung

$$\begin{array}{lll} \bullet & s_{1,2}=-a_{1,2} & D>1 & \text{aperiodisch gedämpft} \\ s_{1,2}=-a & D=1 & \text{aperiodischer Grenzfall} \\ s_{1,2}=-a\pm j\omega_r & 0< D<1 & \text{periodisch gedämpft} \\ s_{1,2}=\pm j\omega_0 & D=0 & \text{ungedämpft} \\ s_{1,2}=a\pm j\omega_r & -1< D<0 & \text{instabil} \\ s_{1,2}=a_{1,2} & D\leq -1 & \text{instabil} \end{array}$$

• Pole: $-D\omega_0 \pm j\omega_0 \sqrt{1-D^2} = -a \pm j\omega_r$



- \bullet Anstiegszeit T_r : Zeit für den Übergang von $10\,\%$ zu $90\,\%$
- \bullet Überschwingzeit: Zeit bis zum Erreichen des ersten Maximums der Sprungantwort $(T_p \simeq \operatorname{Imagin\ddot{a}rteil})$

$$T_p = \frac{\pi}{\omega_0 \sqrt{1 - D^2}} = \frac{\pi}{\omega_r}$$

• Ausregelzeit: Zeit bis zum erstmaligen Erreichen und Verbleiben im

Intervall
$$\pm 2\,\%$$
 vom Endwert $(T_s \simeq \text{Realteil})$

$$T_{s,2\,\%} = -\frac{\ln(0,02\sqrt{1-D^2})}{D\omega_0} \approx \frac{4}{D\omega_0} = \frac{4}{\alpha}$$

$$T_{s,5\,\%} = -\frac{\ln(0,05\sqrt{1-D^2})}{D\omega_0} \approx \frac{3}{D\omega_0} = \frac{3}{\alpha}$$

• %OS: Maximales Überschwingen (%OS $\simeq D = \cos \theta$) $\%OS = e^{-\frac{D\pi}{\sqrt{1-D^2}}}$

- zusätzliche negative Nullstellen machen das System schneller
- positive Nullstellen machen das System nicht-minimalphasig

Dynamisches Verhalten linearer Regelsysteme

- Phasenminimales Verhalten
 - Alle Nullstellen in der linken Halbebene
 - keine Totzeit
 - stabile oder grenzstabile Pole
- Elementare Übertragungsglieder

$$\begin{split} & - \text{ \"{U}bertragungsglied } (PI_{l}D_{m}T_{n}) \\ & G(s) = K \cdot \frac{(1 + T_{D1}s) \cdot (1 + T_{D2}s) \cdot \ldots \cdot (1 + T_{Dm}s)}{s^{l} \cdot (1 + T_{1}s) \cdot (1 + T_{2}s) \cdot \ldots \cdot (1 + T_{n}s)} \\ & = \frac{K}{s^{l}} \cdot \frac{1 + (T_{D1} + \ldots + T_{Dm})s + \ldots + (T_{D1} \cdots T_{Dm})s^{m}}{1 + (T_{1} + \ldots + T_{n})s + \ldots + (T_{1} \cdots T_{n})s^{n}} \end{split}$$

- Proportionalglied (P-Glied): K_P
- Integrierglied (I-Glied): $\frac{K_I}{c}$
- Differenzierglied (D-Glied): $K_D s$
- Zusammengesetzes Ü-Glied (PID-Glied): $K\left(\frac{1}{T_{IS}}+1+T_{DS}\right)$
- Verzögerungsglied 1. Ordnung (PT_1 -Glied): $\frac{K}{1+s \cdot T}$
- Verzögerungsglied 2. Ordnung (PT_2 -Glied): $\frac{K \cdot \omega_0^2}{\omega_0^2 + 2D\omega_0 \cdot s + s^2}$
- Verzögerungsglied *n*-ter Ordnung (PT_n -Glied): $\frac{K}{1+a_1s+...+a_ns^n}$
- Vorhalteglieder: $K(1 + T_{D1}s + T_{D2}^2s^2 + \ldots + T_{Dm}^ms^m)$
- Vorhalteglied 1. Ordnung (PD-Glied): $K \cdot (1 + T_{D1}s)$
- Vorhalteglied mit Verzögerung (DT_1 -Glied): $\frac{K_D s}{1+sT_1}$
- Verzögerndes Integrierglied (IT_1 -Glied): $\frac{1}{s} \cdot \frac{K_1}{1+sT_1}$
- Eigenschaften geregelter Systeme
 - Dynamischer Regelfaktor (Empfindlichkeitsfunktion): R(s) =
 - Parameteränderung: $G_2 \rightarrow G_2 + \Delta G_2$
 - * ohne Rückkopplung: $\frac{\Delta Y}{Y} = \frac{\Delta G_2}{G_2}$
 - * mit Rückkopplung: $\frac{\Delta Y}{Y} = \frac{\Delta G_2}{G_2} \cdot R(s)$
 - * Empfindlichkeit: $S_{G_2} = R(s)$
 - Parameteränderung: $G_3 \rightarrow G_3 + \Delta G_3$
 - * ohne Rückkopplung: $\frac{\Delta Y}{V} = \frac{\Delta G_3}{G_2}$
 - * mit Rückkopplung: $\frac{\Delta Y}{Y} = \frac{\Delta G_3}{G_3} \cdot \frac{G_0}{1 + G_0}$
 - * Empfindlichkeit: $S_{G_3} = \frac{G_0}{1+G_0}$
 - Charakteristische Gleichung: $1 + G_0(s) = 0$
 - Zum verhindern bleibender Regelabweichung:

Prozess	Sprung am	Störung am	Störung am
	Eingang	Prozessausgang	Prozesseingang
P	<i>I</i> -Verhalten	<i>I</i> -Verhalten	<i>I</i> -Verhalten
I	P-Verhalten	P-Verhalten	I-Verhalten

Stabilität

- Definition: $\lim_{t \to a} g(t) = 0$
- System ist stabil, wenn die Antwort auf Anfangsbedingungen abklingt
- BIBO-Stabil: every bounded input produces a bounded output
- Stabilität bei LTI-Systemen
 - asymptotisch stabil: nur Pole in der linken Halbebene
 - instabil: mehrfach-Pol auf der imaginären Achse oder Pol in der
 - grenzstabil: einer oder mehrere einfach-Pole auf der imaginären Achse, keine Pole in der rechten Halbebene
- Hurwitz-Kriterium
 - Notwendige Bedingung: $a_i > 0 \ \forall i$
 - Hurwitz-Determinanten:

	1				,		
	a_{n-1}	a_{n-3}	a_{n-5}		a_0/a_1	• • •	0
	a_n	a_{n-2}	a_{n-4}		$a_0/a_1 a_0/a_1$	• • •	0
	0	a_{n-1}	a_{n-3}				0
$D_n =$	0	a_n	a_{n-2}				0
- n	0	0	a_{n-1}				0
	:	:	:	٠.		:	
		•	•			•	
	0	0	0				a_0

 D_{Hi} : *i*-te Hauptuntermatrix

Kriterium: $a_i>0$ und $D_{Hi}>0$ für alle $i\leq n$

• Routh-Hurwitz-Kriterium

- Routh-Schema

Itout	n-schema.		
s^4	a_4	a_2	a_0
s^3	a_3	a_1	0
s^2	$\frac{-\begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} = b_1$	$\frac{-\begin{vmatrix} a_4 & a_0 \\ a_3 & a_0 \end{vmatrix}}{a_3} = b_2$	$\frac{-\begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3} = 0$
s^1	$\frac{-\begin{vmatrix} a_3 & a_1 \\ b_1 & b_2 \end{vmatrix}}{b_1} = c_1$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	$\left \begin{array}{c} -\left \begin{array}{cc} a_3 & 0 \\ b_1 & 0 \end{array} \right \\ b_1 \end{array} \right = 0$
s^0	$\left \begin{array}{c c} -\left \begin{array}{cc} b_1 & b_2 \\ \hline c_1 & 0 \end{array} \right \\ \hline c_1 \end{array} \right = d_1$	$\frac{-\begin{vmatrix}b_1&0\\c_1&0\end{vmatrix}}{c_1}=0$	$\left \begin{array}{c c} -\left \begin{array}{cc} b_1 & 0 \\ c_1 & 0 \end{array} \right \\ \hline c_1 \end{array} \right = 0$

- Kriterium: Die Zahl der Pole in der rechten Halbeene ist gleich der Zahl der Vorzeichenwechsel in der 1. Spalte des Routh-Schemas
- 1. Spezialfall: Nulleinträge in der erste Spalte. Lösung: ε -Methode
- 2. Spezialfall: Nulleinträge in einer Zeile. Lösung:
 - * Bilde Hilfspolynom mit Koeffizienten aus Zeile über Nullzeile. Höchste Potenz ist die dieser Zeile zugeordnete Potenz. Potenzen fallen in 2-er Schritten.
 - * Differenziere Hilfpolynom. Trage dies anstelle der Nullzeile

Frequenzgang und Bode-Diagramm

Ortskurven

- PT₁: Halbkreis

$$-G(j\omega)\Big|_{\omega=0} = K$$
$$-G(j\omega)\Big|_{\omega=\omega_0} = -j \cdot \frac{K}{2D}$$

PT₃

$$- G(s) = \frac{K}{1 + T_1 s + T_2^2 s^2 + T_3^3 s^3}$$

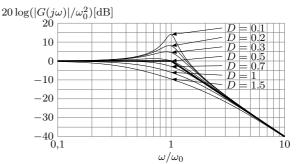
– Schnittpunkt mit imaginären Achse $\omega_{1,2}=\pm\frac{1}{T_2}$

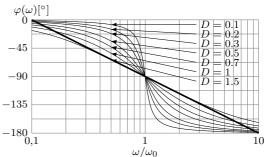
$$\omega_{1,2} = \pm \frac{1}{T_2}$$

– Schnittpunkt mit reellen Achse

$$\omega_3 = 0 \text{ oder } \omega_{4,5} = \pm \sqrt{\frac{T_1}{T_3^3}}$$

- PT_n : $\varphi_{\max} = -n \cdot \frac{\pi}{2}$
- D-Glied: positive imaginäre Achse
- I-Glied: negative imaginäre Achse
- IT_1 -Glied: $G(s) = K_I \cdot \frac{1}{s} \cdot \frac{1}{1+T_1 s}, G(j\omega)|_{\omega \to 0} = -K_I T_1 j\infty$
- Totzeitglied: Kreise im mathematisch negativem Sinn





Nyquist-Kriterium

• Die Anzahl der instabilen Pole des geschlossenen Kreises ergibt sich aus der Differenz von instabilen Polen des offenen Kreises und der Anzahl U der mathematisch positiven Umläufe um (-1,0).

$$r_g = r_o - U\Big|_{-\infty}^{\infty}$$

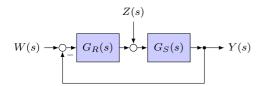
• Der geschlossene Regelkreis ist asymptotisch stabil, wenn die vollständige Ortskurve des offenen Kreises $G_0(j\omega)$ den kritischen Punkt (-1,0) $r_0 + \frac{a_0}{2}$ mal im Gegenuhrzeigersinn umkreist. $r_g + \frac{a_g}{2} = r_o + \frac{a_0}{2} - U\Big|_{-\infty}^{\infty}$

$$r_g + \frac{a_g}{2} = r_o + \frac{a_0}{2} - U\Big|_{-\infty}^{\infty}$$

- \bullet U= Anzahl der Umläufe. Für 0 < ω < ∞ muss die Zahl halbiert
- Einfache Version: $r_o = 0, a_o = 0$
- Phasenrand $\alpha_{Rd} = 180^{\circ} + \varphi(\omega_D)$ mit $|G_0(j\omega_D)| = 1$
- \bullet Amplituden
rand $A_{Rd}=|G_0(j\omega_D')|$ mit $\varphi(\omega_D')=180^\circ.$ Günstig: $-20\,\mathrm{dB}$ bis $-8\,\mathrm{dB}$

10 Entwurf von Regelkreisen

• Standard-Regelkreis



$$Y(s) = \frac{G_0(s)}{1 + G_0(s)} \cdot W(s) + \frac{G_S(s)}{1 + G_0(s)} \cdot Z(s)$$
$$E(s) = \frac{1}{1 + G_0(s)} \cdot W(s) - \frac{G_S(s)}{1 + G_0(s)} \cdot Z(s)$$

• Stationärer Fehler:

Systemtyp	Stationärer Fehler $e(\infty)$ für		
N	$W(s) = \frac{A}{s}$	$W(s) = \frac{B}{s^2}$	$W(s) = \frac{C}{s^3}$
0	$\frac{A}{1+K_0}$	∞	∞
1	0	$\frac{B}{K_0}$	∞
2	0	0	$\frac{C}{K_0}$

• 2. Ordnung

— Amplitudenüberhöhung:
$$\omega_R = \omega_0 \cdot \sqrt{1-2D^2}$$
, $A_{\max}(\omega) = A(\omega_R) = \frac{1}{2D\sqrt{1-2D^2}} \cdot \frac{1}{\omega_0^2}$

$$-G_{\text{ges}}(s) = \frac{\omega_0^2}{s^2 + 2D\omega_0 s + \omega_0^2}$$

$$\Rightarrow G_0(s) = \frac{\omega_0^2}{s \cdot (s + 2D\omega_0)} \Rightarrow \omega_D = \omega_0 \sqrt{\sqrt{4D^4 + 1} - 2D^2}$$

$$\begin{split} &-\Rightarrow \alpha_{Rd}=\tan^{-1}\left(\frac{2D}{\sqrt{\sqrt{4D^4+1}-2D^2}}\right)\approx 0.01\alpha_{Rd}/\mathrm{Grad} \\ &\text{für } 0\leq \alpha_{Rd}<70^\circ \end{split}$$

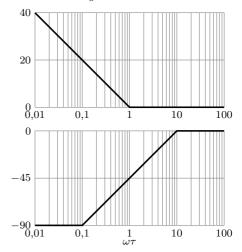
• Strukturstabile Regelkreise

Regelstrecke	Regler
P	P, I, PI
PT_1	P, I, PI
PT_2	P
I	P, PI
IT_1	P
I_2	PD

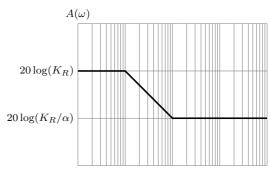
• Ziegler-Nichols:

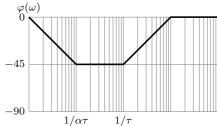
- Methode 1: G_s durch Totzeit T_t und PT_1 mit Zeitkonstante Tund Endwert K_s approximieren
- Methode 2: Schwingversuch: Regelkreis mit P-Reglerschließen, und K auf $K_{p,\mathrm{krit}}$ erhöhen, bei der eine Dauerschwingung mit Periode $T_{\rm krit}$ auftritt

- Chien, Hrones, Reswick: Approximation wie bei Methode 1 oben. $G_R(s) = K_p \cdot \left(1 + \frac{1}{T_n s} + T_v s\right)$
- PI-Regler $G_R(s) = \frac{K_R}{(1+s\tau)}$



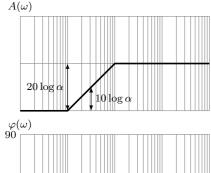
- Falls Stabil: Lege $\tau = T_1$, wobei T_1 die größte Zeitkonstante ist.
- z.B. wähle K_R so, dass α_{Rd} erfüllt wird
- Nichtidealer *PI*-Regler $G_R(s) = K_R \frac{1+\tau s}{1+\alpha\tau s}$

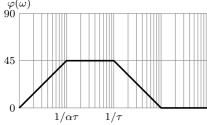




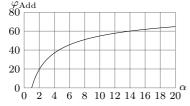
- $-\,$ Bestimmung von K_R so, dass stionationärer Fehler innerhalb von
- Aufzeichnen von $K_RG(s)$ im Bode-Diagramm
- Durchtrittsfrequenz ω_D bei $\alpha_{Rd} + 5^{\circ}$ einzeichnen
- Nullstelle von $G_R(s)$ bei $\frac{1}{\tau} = 0.1 \omega_D$ festlegen
- $-\alpha$ ergibt sich dann aus $\alpha = |G(\omega_D)|K_R$
- Idealer PD-Regler: $G_K(s) = K_R(1 + T_D s)$
- Realer PD-Regler

$$G_K(s) = \frac{1 + \alpha \tau s}{1 + \tau s}$$
 $\alpha > 1$



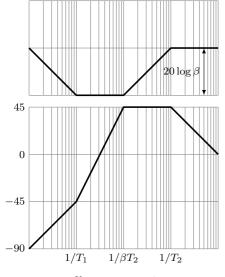


- Bestimmung von K_R so, dass stationärer Fehler innerhalb der Fehlertoleranz
- Aufzeichnen von $K_RG(s)$
- Bestimmung von α_{Rd} und φ_{Add} (+5°)
- Bestimmung von α mit $\varphi_{Add} = \arcsin\left(\frac{\alpha-1}{\alpha+1}\right) \Leftrightarrow \alpha = \frac{1+\sin(\varphi_{Add})}{1-\sin(\varphi_{Add})}$



- Frequenz, bei der $|K_RG(j\omega)|=-10\log\alpha,$ ist ω_D und ω_{Mitte}
- Pol: $\frac{1}{T} = \omega_D \sqrt{\alpha}$
- Nullstelle: $\frac{1}{\alpha T} = \frac{\omega_D}{\sqrt{\alpha}}$
- Überprüfe Phasenrand, und wiederhole ggf.

• PID-Regler



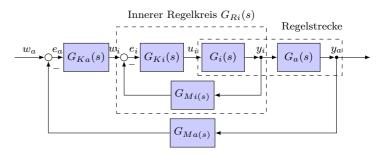
- Aufzeichnen von $K_RG(s)$, Bestimmung des Phasenrands α_{Rd} und der zusätzlichen notwendigen Phasenvoreilung φ_{Add}
- Bestimmung von β wie α oben. $\omega_D = \omega_m = \frac{1}{\sqrt{\beta}T_2} \Rightarrow \frac{1}{T_2} =$
- $-\omega_D>\frac{1}{T_1}$ und $\frac{1}{T_2}>\omega_D>\frac{1}{\beta T_2}$: $T_1=\frac{1}{|K_RG(j\omega_D)|\sqrt{\beta}}$
- Lead-Kompensation (Phasenanhebendes Korrekturglied)
 - $-G_R(s) = \frac{1+T_D s}{1+T_{v,s}} \text{ mit } T_D > T_v \ (PDT_1)$
- Lag-Kompensation (Phasenabsenkendes Korrekturglied)

$$-G_R(s) = \frac{1+T_D s}{1+T_v s}$$
 mit $T_D < T_v \ (PDT_1)$

• Zusammenfassung

- 1. Stabilitätsreserve wird durch Phasenrand und Amplitudenrand
- 2. Kreisverstärkung $G_0(0)$ beieinflusst statisches Verhalten
- 3. Harmonische Schwingungen mit Frequenz größer als ω_D werden gedämpft. ω_D gibt auch Anstiegszeit (Schnelligkeit) an.
- 4. Phasenanhebung bewirkt i.A.
 - Vergrößerung der Stabilitätsreserve
 - Verringerung des Überschwingens der Regelgröße
- 5. Phasenabsenkung bewirkt i.A.
 - Amplitudengang wird abgesenkt und damit ω_D verringert
 - verkleinert die Stabilitätsreserve
- 6. Amplitudengang soll um ω_D mit 20 dB / Dekade abfallen, denn dann ist der Phasenrand $\approx 0^{\circ}$ bis 90°

Kaskadenregelung, Störgrößenaufschaltung



Wurzelortskurve

- Amplitudenbedingung: $|G(s)| = \frac{1}{K}$
- Phasenbedingung: $\arg[G(s)] = \pm 180^{\circ}(2k+1)$
- 1. Die WOK ist symmetrisch zur reellen Achse.
- 2. Die WOK besteht aus n Ästen. (n-m) Äste enden im Unendlichen. Alle Äste beginnen mit K=0 in den Polstellen und enden mit $K\to\infty$ in den Nullstellen bzw. im Unendlichen.

$$\sigma_a = \frac{1}{n-m} \left(\sum_{\nu=1}^n \operatorname{Re} s_{p_{\nu}} - \sum_{\mu=1}^m \operatorname{Re} s_{N_{\mu}} \right)$$

- 4. Ein Punkt auf der reellen Achse gehört zur WOK, wenn die Gesamtzahl der rechts von ihm liegenden Pole und Nullstellen ungerade ist.
- 5. Verläuft die WOK auf der reellen Achse zwischen zwei Nullstellen, gibt es einen Vereinigungspunkt, zwischen zwei Polen einen Verzweigungs-

$$\sum_{\nu=1}^{n} \frac{1}{(s - s_{P_{\nu}})} = \sum_{\mu=1}^{m} \frac{1}{(s - s_{N_{\mu}})}$$

$$\varphi_{P_{\varrho,A}} = \frac{1}{r_{P_{\varrho}}} \left(-\sum_{\substack{\nu=1\\\nu\neq\varrho}}^{n} \varphi_{P_{\nu}} + \sum_{\mu=1}^{m} \varphi_{N_{\mu}} \pm 180^{\circ} (2k+1) \right)$$

$$\varphi_{N_{\varrho,E}} = \frac{1}{r_{N_{\varrho}}} \left(-\sum_{\mu=1}^{m} \varphi_{N_{\mu}} + \sum_{\nu=1}^{n} \varphi_{P_{\nu}} \pm 180^{\circ} (2k+1) \right)$$

$$K = \frac{\prod_{\nu=1}^{n} |s - s_{P_{\nu}}|}{\prod_{\mu=1}^{m} |s - s_{N_{\mu}}|}$$

8. Asymptotische Stabilität für alle Kliegt vor, wenn die WOK links der imaginäre Achse liegt.