1 Allgemeines

 $(u \cdot v)' = u' \cdot v + u \cdot v' \quad (\frac{u}{v})' = \frac{u' \cdot v - u \cdot v'}{v^2} \quad \int u' \cdot v \, dx = u \cdot v - \int u \cdot v' \, dx \quad \frac{dy(x(t))}{dt} = y'(x(t)) \cdot x'(t)$ $\frac{d\sin(x)}{dt} = \cos(x) \qquad \frac{d\cos(x)}{dt} = -\sin(x) \qquad \frac{d\tan(x)}{dx} = \frac{1}{\cos^2(x)} \qquad \frac{d\ln(|x|)}{dx} = \frac{1}{x}$ $\cos(x) \approx 1$ und $\sin(x) \approx x$ bei kleinem x in rad $e^{jx} = \cos(x) + j\sin(x)$ $j = \sqrt{-1}$ $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ und $z_1 \cdot z_1^* = |z_1|^2$ mit $z_1, z_2 \in \mathbb{C}$ $e^{jx} + e^{-jx} = 2 \cdot \cos(x)$ $e^{jx} - e^{-jx} = 2j \cdot \sin(x)$ $e^x + e^{-x} = 2 \cdot \cosh(x)$ $e^x - e^{-x} = 2 \cdot \sinh(x)$ $\log_b r = \frac{\log_a r}{\log_b h}$ $\log(ab) = \log(a) + \log(b) \qquad \log(\frac{a}{b}) = \log(a) - \log(b) \qquad \log(a^b) = b \cdot \log(a)$ $\begin{array}{c|c} r \\ \hline \alpha \\ \hline \alpha \\ \hline \end{array} \begin{array}{c} y \\ \hline \end{array} \\ cos(\alpha) = \frac{x}{r} \\ \hline \end{array} \\ sin(\alpha) = \frac{y}{r} \\ \hline \end{array} \\ tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{y}{x} \\ \hline \end{array}$ $=\frac{180^{\circ}}{\pi}\cdot\alpha_{rad}$ $\alpha_{rad}=\frac{\pi}{180^{\circ}}\cdot\alpha_{grad}$ $1 \, \text{rad} = \frac{360^{\circ}}{2}$ $\cos(x) = \cos(-x) \qquad -\sin(x) = \sin(-x) \qquad -\arctan(x) = \arctan(-x) \qquad \sin(x) = \frac{\sin(x)}{x}$ $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) \qquad \sin(a) \cdot \cos(b) = \frac{1}{2} \cdot (\sin(a-b) + \sin(a+b))$ $\sin(a) \cdot \sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b)) \qquad \cos(a) \cdot \cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$ $\sin(a) \pm \sin(b) = 2 \cdot \sin(\frac{a \pm b}{2}) \cdot \cos(\frac{a \mp b}{2})$ $\cos(a) + \cos(b) = 2 \cdot \cos(\frac{a+b}{2}) \cdot \cos(\frac{a-b}{2}) \qquad \cos(a) - \cos(b) = -2 \cdot \sin(\frac{a+b}{2}) \cdot \sin(\frac{a-b}{2})$ $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \cdot d - c \cdot b \qquad \det \begin{pmatrix} a & b & c \\ d & e & f \\ a & b & i \end{pmatrix} = aei + bfg + cdh - gec - hfa - idb$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{a \cdot d - c \cdot b} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \qquad \begin{pmatrix} a & b & c \\ d & e & f \\ a & b & i \end{pmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \cdot \begin{pmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix}$ Die Inverse einer symmetrischen Matrix ist auch symmetrisch.

Größenordnungen:

¹Wer Fehler findet teilt mir diese bitte über robert.uhl@rwth-aachen.de mit damit ich sie korrigieren kann.

2 Symmetrisches System

$$\underline{\vec{U}}_{RST} = \begin{pmatrix} \underline{U}_R \\ \underline{U}_S \\ \underline{U}_T \end{pmatrix} = \begin{pmatrix} 1 \\ \underline{a}^2 \\ \underline{a} \end{pmatrix} \cdot \underline{U}_R \qquad \underline{\vec{I}}_{RST} = \begin{pmatrix} \underline{I}_R \\ \underline{I}_S \\ \underline{I}_T \end{pmatrix} = \begin{pmatrix} 1 \\ \underline{a}^2 \\ \underline{a} \end{pmatrix} \cdot \underline{I}_R$$

mit $a = \exp(i \cdot 120^\circ)$ und $1 + a^2 + a = 0$

mit $\underline{a} = \exp(j \cdot 120^\circ)$ und $1 + \underline{a}^2 + \underline{a} = 0$

3 Symmetrische Komponenten

Null-System (0), Mit-System (1), Gegen-System (2)

$$\vec{\underline{U}}_{RST} = \mathbf{Z}_{RST} \cdot \vec{\underline{I}}_{RST} \quad \longrightarrow \quad \vec{\underline{U}}_{012} = \mathbf{Z}_{012} \cdot \vec{\underline{I}}_{012} \quad \text{mit } \mathbf{Z}_{RST} = \begin{pmatrix} \underline{A} & \underline{B} & \underline{B} \\ \underline{B} & \underline{A} & \underline{B} \\ \underline{B} & \underline{B} & \underline{A} \end{pmatrix}$$

$$\mathbf{T}_{012}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \underline{a}^2 & \underline{a} \\ 1 & \underline{a} & \underline{a}^2 \end{pmatrix} \text{ und } \mathbf{T}_{012} = \frac{1}{3} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & \underline{a} & \underline{a}^2 \\ 1 & \underline{a}^2 & \underline{a} \end{pmatrix}$$

$$\vec{\underline{U}}_{012} = \begin{pmatrix} \vec{\underline{U}}_{0} \\ \underline{U}_{1} \\ \underline{U}_{2} \end{pmatrix} = \mathbf{T}_{012} \cdot \vec{\underline{U}}_{RST} \quad \vec{\underline{U}}_{RST} = \mathbf{T}_{012}^{-1} \cdot \vec{\underline{U}}_{012}$$

$$\vec{\underline{I}}_{012} = \begin{pmatrix} \vec{\underline{I}}_{0} \\ \underline{I}_{1} \\ \underline{I}_{2} \end{pmatrix} = \mathbf{T}_{012} \cdot \vec{\underline{I}}_{RST} \quad \vec{\underline{I}}_{RST} = \mathbf{T}_{012}^{-1} \cdot \vec{\underline{I}}_{012}$$

$$\mathbf{Z}_{012} = \mathbf{T}_{012} \cdot \mathbf{Z}_{RST} \cdot \mathbf{T}_{012}^{-1} = \begin{pmatrix} \underline{A} + 2 \cdot \underline{B} & 0 & 0 \\ 0 & \underline{A} - \underline{B} & 0 \\ 0 & 0 & \underline{A} - \underline{B} \end{pmatrix}$$
aligemein:
$$\mathbf{Z}_{RST} = \begin{pmatrix} \underline{A} & \underline{B} & \underline{C} \\ \underline{B} & \underline{C} & \underline{A} \\ \underline{B} & \underline{C} & \underline{A} \\ \underline{B} & \underline{C} & \underline{A} \\ \underline{B} & \underline{C} & \mathbf{X}_{012} = \mathbf{I}_{012} \cdot \vec{\underline{I}}_{12} \quad \mathbf{I}_{12} = \mathbf{I}_{012} \cdot \mathbf{I}_{012} \cdot \mathbf{I}_{012} = \mathbf{I}_{012} \cdot \mathbf{I$$

Transformator: Übersetzung auf $\underline{\vec{U}}_{012}$ und/oder $\underline{\vec{I}}_{012}$ anwenden, erst dann Transformation in das RST-System.

$$\vec{\underline{U}}_{012,US} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\underline{u}} & 0 \\ 0 & 0 & \frac{1}{\underline{u}^*} \end{pmatrix} \cdot \vec{\underline{U}}_{012,OS} \qquad \vec{\underline{U}}_{012,OS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \underline{u} & 0 \\ 0 & 0 & \underline{u}^* \end{pmatrix} \cdot \vec{\underline{U}}_{012,US}$$
$$\vec{\underline{I}}_{012,US} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \underline{u}^* & 0 \\ 0 & 0 & \underline{u} \end{pmatrix} \cdot \vec{\underline{I}}_{012,OS} \qquad \vec{\underline{I}}_{012,OS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\underline{u}^*} & 0 \\ 0 & 0 & \frac{1}{\underline{u}} \end{pmatrix} \cdot \vec{\underline{I}}_{012,US}$$

4 012-Modelle symmetrischer Anlagen

4.1 Spannungsquelle

4.2 Sternpunktimpedanz

4.3 Längsimpedanzen

4.4 Queradmittanzen/Verbraucher

ungeerdete Last in Sternschaltung: vgl. <u>B</u> nach Stern-Dreieck-Umwandlung $\underline{Y}_{\Delta} = \frac{1}{3} \cdot \underline{Y}_{\bigstar}$

4.5 Symmetrierung von einphasigen Verbrauchern

Das Netz wird dann nicht mit Strömen des Gegen-Systems belastet.

4.6 Zweiwicklungstransformator:

Leerlaufversuch:

mit Bemessungsspannung $U_{r,OS}$, liefert Eisenverlustleistung $P_{Fe,r}$ und Leerlaufstrom $I_{0,OS}$

$$R'_{Fe} \approx \frac{U_{r,OS}^2}{P_{Fe,r}} \qquad X'_h \approx \frac{U_{r,OS}}{\sqrt{3} \cdot I_{0,OS}} \qquad \qquad R''_{Fe} \approx \frac{U_{r,US}^2}{P_{Fe,r}} \qquad X''_h \approx \frac{U_{r,US}}{\sqrt{3} \cdot I_{0,US}}$$

Kurzschlussversuch:

Bemessungsstrom I_r in kurzgeschlossener Wicklung durch an anderer Wicklung angelegte Bemessungskurzschlussspannung U_{kr} mit relativer Kurzschlussspannung $u_{kr} = \frac{U_{kr}}{U_r} \cdot \sqrt{3}$ und Kurzschlussverlusten $P_{Cu,r}$

$$R'_{Cu} \approx P_{Cu,r} \cdot \left(\frac{U_{r,OS}}{S_r}\right)^2 \qquad X'_{\sigma} \approx u_{kr} \cdot \frac{U_{r,OS}^2}{S_r} \qquad \qquad R''_{Cu} \approx P_{Cu,r} \cdot \left(\frac{U_{r,US}}{S_r}\right)^2 \qquad X''_{\sigma} \approx u_{kr} \cdot \frac{U_{r,US}^2}{S_r}$$

T-Ersatzschaltbild im Mit- und Gegen-System:

π -Ersatzschaltbild im Mit- und Gegen-System:

Ersatzschaltbild des Yy-Transformators im Null-System: Kopplung der Teilnetze im Null-System

Ersatzschaltbild des <u>Yd-Transformators im Null-System</u>: Entkopplung der Teilnetze im Null-System

4.7 Dreiwicklungstransformator

Die Bezugsseite als Seite 1 wählen!

$$\begin{split} X_{k12} &\approx u_{kr,12} \cdot \frac{U_{r1}^2}{S_{r2}} \qquad (\text{Reaktanz zwischen Seite 1 und Seite 2}) \\ X_{k13} &\approx u_{kr,13} \cdot \frac{U_{r1}^2}{S_{r3}} \qquad (\text{Reaktanz zwischen Seite 1 und Seite 3}) \\ X'_{k23} &\approx u_{kr,23} \cdot \frac{U_{r1}^2}{S_{r3}} \qquad (\text{auf Seite 1 bezogene Reaktanz zwischen Seite 2 und Seite 3}) \\ \begin{pmatrix} X_{\sigma 1} \\ X'_{\sigma 2} \\ X'_{\sigma 2} \end{pmatrix} &= \frac{1}{2} \cdot \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} X_{k12} \\ X_{k13} \\ X'_{k23} \end{pmatrix} \end{split}$$

Ersatzschaltbild des Yyd-Transformators im Null-System: Entkopplung der Teilnetze im Null-System bei nur einseitiger Sternpunkterdung

4.8 Turbogenerator

4.9 Symmetrische Freileitungen und Kabel

- Erdkapazitätsbelag: $C_E^{'}=C_B^{'}-3\cdot C_K^{'}=C_0^{'}$
- Betriebskapazitätsbelag: $C_B^{'}=C_E^{'}+3\cdot C_K^{'}=C_1^{'}=C_2^{'}$
- Koppelkapazitätsbelag: $C_K' = \frac{C_B' C_E'}{3}$
- ...induktivitätsbelag: $L_{0}^{'}=L_{B}^{'}+3\cdot M^{'}$
- Betriebsinduktivitätsbelag: $L_{B}^{^{\prime}}=L_{1}^{^{\prime}}=L_{2}^{^{\prime}}$
- Koppelinduktivitätsbelag: M'

Kapazitätsbeläge für verdrillte Leitungen:

$$\begin{split} C'_0 &\approx \frac{1}{3} \cdot \frac{2\pi\varepsilon_0}{\ln\left(\frac{2h}{\sqrt[3]{\rho d^2}}\right) - \frac{\left(\ln\left(\frac{D_{ES}}{d_{ES}}\right)\right)^2}{\ln\left(\frac{2h_{ES}}{\rho_{ES}}\right)}}\\ C'_1 &= C'_2 &\approx \frac{2\pi\varepsilon_0}{\ln\left(\frac{d}{\rho}\right)} \end{split}$$

Widerstands- und Induktivitätsbeläge für verdrillte Leitungen:

Das Erdseil reduziert den Widerstands- und Induktivitätsbelag im Nullsystem.

$$\begin{split} \underline{Z}_1' &= \underline{Z}_2' = R' + j \cdot \frac{\omega\mu_0}{2\pi} \cdot \ln\left(\frac{d}{\rho \cdot \exp(-\frac{1}{4})}\right) \\ \underline{Z}_0' &= \left(R' + 3\frac{\omega\mu_0}{8} - 3\frac{\omega\mu_0}{8}\frac{\ln\left(\frac{\delta_E}{d_{ES}}\right)}{\ln\left(\frac{\delta_E}{\rho_{ES} \exp(-\frac{1}{4})}\right)}\right) + j \cdot \frac{\omega\mu_0}{2\pi} \left(\ln\left(\frac{\delta_E^3}{d^2\rho \exp(-\frac{1}{4})}\right) - 3\frac{\left(\ln\left(\frac{\delta_E}{d_{ES}}\right)\right)^2}{\ln\left(\frac{\delta_E}{\rho_{ES} \exp(-\frac{1}{4})}\right)}\right) \end{split}$$

Leiterradius ρ und mittlere Abstände $d = \sqrt[3]{d_{12}d_{23}d_{31}}, D = \sqrt[3]{D_{12}D_{23}D_{31}}$ und $h = \sqrt[3]{h_1h_2h_3}$

 \underline{U}_0

 \underline{U}_1

 \underline{U}_2

5 012-Modelle von Unsymmetrien

5.1 Einphasige Querunsymmetrie

5.2 Zweiphasige Querunsymmetrie mit Erdberührung

5.3 Zweiphasige Querunsymmetrie ohne Erdberührung

5.5 Zweiphasige Längsunsymmetrie

6 Sternpunktbehandlung

Ma&nahmen, die bei einphasigen Fehlern den auftretenden Kurzschlussstrom und/oder die damit verbundene Spannungsunsymmetrie begrenzen.

Art der Sternpunktbe-	Isolierter Sternpunkt	Erdschlusskompensation	Niederohmige/Direkte
handlung			Sternpunkterdung
Anwendungsbereiche	Mittelspannungsnetze	Mittel- und Hochspan-	Kabelnetze sowie Hoch-
	mit niedriger Ausdeh-	${ m nungsfreileitungsnetze}$	und Höchstspannungsnetze
	nung		
Netzausdehnung	sehr begrenzt	begrenzt	unbegrenzt
$\frac{Z_0}{Z_1}$ an Fehlerstelle	groß	sehr groß	3 bis 5,5
einpoliger Kurzschluss-	$I_{k1}'' = \sqrt{3} \cdot \omega \cdot C_E' \cdot l \cdot U_n$	$I_{k1}'' = I_{CE} \cdot \sqrt{d^2 + v^2}$	$I_{k1}'' = 0.4$ bis $0.6 \cdot I_{k3}''$ (hoch)
strom			
Verhalten bei Lichtbo-	selbsttätig verlöschend	selbsttätig verlöschend im	Beseitigung des Lichtbo-
genfehlern	im Nulldurchgang	Nulldurchgang	gens durch (einphasige)
			Kurzzeitunterbrechung
Weiterbetrieb möglich?	Ja	Ja	Nein, selektive Abschal-
			tung erforderlich
Erdfehlerfaktor $\delta = \frac{U_{na}}{U_{vo}}$	$\sqrt{3}$ im gesamten Netz-	$\sqrt{3}$ im gesamten Netzge-	<1,4an der Fehlerstelle
	gebiet	biet	
Erforderliche Aufwen-	selektive Erdschlusser-	selektive Erdschlusser-	Sternpunktdrossel bzw. Er-
dungen	fassung	fassung, regelmäßiges	dungsanlagen (bei starrer
		Anpassen der Erdschlusss-	Erdung)
		pule	
Spannungserhöhung	Ja, doppelter Wert,	Nein, schwebende Span-	
nach Erlöschen des	Wiederzündung mög-	nungswiederkehr, Wieder-	
Erdschlusses	lich	zündung unwahrscheinlich	
Sonstiges	Gefahr des Doppelerd-	im Normalbetrieb Stern-	Begrenzung von $I_{k1}^{\prime\prime}$ indem
	schlusses, Selbstheilung	punktverlagerung, gering	nicht alle Transformator-
	der Luftisolation	verstimmter Betrieb (über-	Sternpunkte geerdet wer-
		kompensiert)	den

6.1 Erdschlusskompensation

 $I_{CE} = 3 \cdot \omega \cdot C'_{E} \cdot l \cdot E_{R}$

ideale Petersenspule: $X_P = \omega \cdot L_P$

reale Petersenspule: $\underline{Y}_P = G_P + \frac{1}{j \cdot X_P}$

Verstimmung: $v = 1 - \frac{1}{3 \cdot \omega^2 \cdot L_P \cdot C'_E \cdot l}$

- v < 0:Netz überkompensiert, $I_{k1}^{\prime\prime} > 0,$ induktiv
- v = 0: Netz kompensiert (Resonanz), $I_{k1}^{''} = 0$
- v>0: Netz unterkompensiert, $I_{k1}^{\prime\prime}>0,$ kapazitiv

Dämpfung: $d = \frac{G_P + 3 \cdot G'_E \cdot l}{3 \cdot \omega \cdot C'_E \cdot l}$

Parallelresonanz: $3 \cdot X_P = \frac{1}{\omega \cdot C_E}$

7 Beeinflussung

Verursachendes System V, Beeinflusstes System B, Kompensationsleiter ES

- Leiterhöhe über der Erde mit maximalem Durchhang $f_m: h_i = h 0.7 \cdot f_m$
- (Bündel-)Leiterradius: ρ_i
- Abstand Leiter i zu Spiegelleiter k: D_{ik}
- Abstand Leiter i zu Leiter k: d_{ik}

n-facher Bündelleiter: Ersatzleiter in Bündelmitte mit $\rho_i = \rho_B = \sqrt[n]{n \cdot \rho \cdot R^{n-1}}$ mit $R = \frac{d_{TL}}{\sqrt{2}}$ bei n = 4

nicht parallele Leiter:

 $d=\sqrt{d_a\cdot d_e}$ mit dem Leiterabstand d_a am Anfang und d_e am Ende bei $\frac{1}{3}\leq \frac{d_e}{d_a}\leq 3$

Kompensationsleiter/Erdseil: $\underline{\vec{U}}_{ES} = \vec{0}$ und $\underline{\vec{Q}}_{ES} = \vec{0}$, da über den Mast geerdet

7.1 Kapazitive Beeinflussung

Potentialkoeffizientenmatrix:
$$\mathbf{P} = \begin{pmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nm} \end{pmatrix}$$

mit $p_{ii} = \frac{1}{C'} = \frac{1}{2\pi\varepsilon_0} \cdot \ln\left(\frac{2\cdot h_i}{\rho_i}\right)$ und $p_{ik} = p_{ki} = \frac{1}{2\pi\varepsilon_0} \cdot \ln\left(\frac{D_{ik}}{d_{ik}}\right)$
 $\vec{\underline{U}} = \mathbf{P} \cdot \vec{\underline{Q}}' \qquad \vec{\underline{Q}}' = \mathbf{C}' \cdot \vec{\underline{U}}$ mit $\mathbf{C}' = \mathbf{P}^{-1}$

Verschiebungsströme:

$$\Delta \vec{\underline{I}}' = \begin{pmatrix} \Delta \vec{\underline{I}}_{V} \\ \Delta \vec{\underline{I}}_{B} \\ \Delta \vec{\underline{I}}_{ES} \end{pmatrix} = j\omega \cdot \vec{\underline{Q}}' = j\omega \cdot \mathbf{C}' \cdot \vec{\underline{U}} = j\omega \cdot \begin{pmatrix} \mathbf{C}_{V,V}' & \mathbf{C}_{V,B}' & \mathbf{C}_{V,ES}' \\ \mathbf{C}_{B,V}' & \mathbf{C}_{B,B}' & \mathbf{C}_{B,ES}' \\ \mathbf{C}_{ES,V}' & \mathbf{C}_{ES,B}' & \mathbf{C}_{ES,ES}' \end{pmatrix} \cdot \begin{pmatrix} \vec{\underline{U}}_{V} \\ \vec{\underline{U}}_{B} \\ \vec{\underline{U}}_{ES} \end{pmatrix}$$

Rückwirkung von B auf V und ES i.d.R. vernachlässigbar, $\mathbf{C}_{V\!,B}^{'}=\mathbf{C}_{ES,B}^{'}=\mathbf{0}.$

Quellenstrom: $\underline{\vec{I}}_{BQ}' = -j\omega \cdot \mathbf{C}_{B,V}' \cdot \underline{\vec{U}}_{V}$ $\underbrace{I_{BQ}' l}_{\bullet}$ $\underbrace{I_{BQ}' l}_{\bullet}$

Berührungsspannung isolierter Leiter: $\underline{\vec{U}}_B = -\mathbf{C}_{B,B}^{'-1} \cdot \mathbf{C}_{B,V}^{'} \cdot \underline{\vec{U}}_V$ (längenunabhängig!) Berührungsstrom widerstandslos: $\Delta \underline{\vec{I}}_B^{'} = -\underline{\vec{I}}_{BQ}^{'} = j\omega \cdot \mathbf{C}_{B,V}^{'} \cdot \underline{\vec{U}}_V$

Erdkapazität: $\underline{C}'_{E,a} = \sum_{i} c'_{ai}$ (Zeilensumme) Koppelkapazität: $C'_{K,ab} = -c'_{ab}$ (negatives Nebendiagonalelement)

ideale Verdrillung: Mittelwert der Kapazitäten bestimmen und diesen als neue Kapazitäten benutzen

7.2 Induktive Beeinflussung

Im Fehlerfall wirk ES dämpfend.

Selbst-/Schleifenimpedanz: $\underline{Z}'_{ii} = R' + j\omega \cdot L' = (R'_i + \frac{\omega \cdot \mu_0}{8}) + j \cdot \frac{\omega \cdot \mu_0}{2\pi} \cdot \ln\left(\frac{\delta_E}{\rho_{eq}}\right)$ mit $d_{ik} \le 0, 3 \cdot \delta_E$ und

- einfacher Leiter: $\rho_{eq} = \rho \cdot \exp(-\frac{1}{4})$
- Bündelleiter: $\rho_{eq} = \rho_B \cdot \exp(-\frac{1}{4 \cdot n})$
- dünner Rohrleiter: $\rho_{eq} = \rho$

Koppelimpedanz: $\underline{Z}'_{ik} = \underline{Z}'_{ki} = \frac{\omega \cdot \mu_0}{8} + j \cdot \frac{\omega \cdot \mu_0}{2\pi} \cdot \ln\left(\frac{\delta_E}{d_{ik}}\right) \quad \text{mit } d_{ik} \le 0, 3 \cdot \delta_E$

Erdstromtiefe:
$$\delta_E = \frac{1,85}{\sqrt{\omega \cdot \mu_0 \cdot \kappa_E}} = \frac{1,85}{\sqrt{\frac{\omega \cdot \mu_0}{2\pi} \cdot 2\pi \cdot \kappa_E}}$$

$$\Delta \underline{\vec{U}}' = \begin{pmatrix} \Delta \underline{\vec{U}}'_V \\ \Delta \underline{\vec{U}}'_B \\ \Delta \underline{\vec{U}}'_{ES} \end{pmatrix} = \underline{\mathbf{Z}}' \cdot \underline{\vec{I}} = \begin{pmatrix} \underline{\mathbf{Z}}'_{V,V} & \underline{\mathbf{Z}}'_{V,B} & \underline{\mathbf{Z}}'_{V,ES} \\ \underline{\mathbf{Z}}'_{B,V} & \underline{\mathbf{Z}}'_{B,B} & \underline{\mathbf{Z}}'_{B,ES} \\ \underline{\mathbf{Z}}'_{ES,V} & \underline{\mathbf{Z}}'_{ES,B} & \underline{\mathbf{Z}}'_{ES,ES} \end{pmatrix} \cdot \begin{pmatrix} \underline{\vec{I}}_V \\ \underline{\vec{I}}_B \\ \underline{\vec{I}}_{ES} \end{pmatrix}$$

Die Rückwirkungen von B auf V und ES sind i.d.R. vernachlässigbar, $\underline{\mathbf{Z}}'_{V,B} = \underline{\mathbf{Z}}'_{ES,B} = \mathbf{0}$, dann:

Erdseilströme: $\underline{\vec{I}}_{ES} = -\underline{\mathbf{Z}}_{ES,ES}^{'-1} \cdot \underline{\mathbf{Z}}_{ES,V}' \cdot \underline{\vec{I}}_{V}$ (wirken dämpfend)

 $\text{induzierte Spannungen: } \vec{\underline{U}}_{BQ}^{'} = \underline{\mathbf{Z}}_{B,V}^{'} \cdot \vec{\underline{I}}_{V} + \underline{\mathbf{Z}}_{B,ES}^{'} \cdot \vec{\underline{I}}_{ES} \qquad \text{Ersatzstromquelle: } \underline{I}_{BQ} = \frac{\underline{U}_{BQ}^{'}}{\underline{Z}_{l}^{'}} = \frac{\underline{U}_{BQ}}{\underline{Z}_{l}^{'}}$

allgemeine Leitung: $\underline{Z}'_{BB} = R' + j\omega \cdot L' = \underline{\gamma} \cdot \underline{Z}_W$ und $\underline{Y}'_{BB} = G' + j\omega \cdot C' = \frac{\underline{\gamma}}{\underline{Z}_W}$ $\tanh\left(\frac{\underline{\gamma}\cdot l}{\underline{\gamma}}\right)$

$$\underline{Y}_q = \frac{\tanh\left(\frac{z}{2}\right)}{\underline{Z}_W} \quad \text{und} \quad \underline{Z}_l = \underline{Z}_W \cdot \sinh(\underline{\gamma} \cdot l)$$

elektrisch kurze Leitung: $\underline{Y}_q = \frac{\underline{\gamma} \cdot l}{2 \cdot \underline{Z}_W} = \frac{\underline{Y}'_{BB} \cdot l}{2}$ und $\underline{Z}_l = \underline{Z}_W \cdot \underline{\gamma} \cdot l = \underline{Z}'_{BB} \cdot l$ mit $\underline{\gamma} = j \cdot \beta$ bei $\gamma \cdot l \ll 1$

unendlich lange Leitung: Abschluss mit dem Wellenwiderstand \underline{Z}_W auf beiden Seiten

$$\mathbf{Erdseilreduktions faktor:} \ \underline{p} = \frac{\underline{U}'_{BQ, \mathrm{mit \ Kompensationsleiter}}}{\underline{U}'_{BQ, \mathrm{ohne \ Kompensationsleiter}}} = \frac{\underline{I}_{BQ, \mathrm{mit \ Kompensationsleiter}}}{\underline{I}_{BQ, \mathrm{ohne \ Kompensationsleiter}}}$$

7.2.1 Grundsätzliche Beeinflussungsfragen an elektrisch kurzen Leitungen beidseitig isolierter Leiter: $\underline{U}_{B1} = -\underline{U}_{B2} = \frac{1}{2} \cdot \underline{U}'_{BQ} \cdot l$ mit $\underline{I}_{B1} = \underline{I}_{B2} = 0$ einseitig geerdeter Leiter: $\underline{U}_{B1} = \underline{U}'_{BQ} \cdot l$ mit $\underline{U}_{B2} = \underline{I}_{B1} = 0$ (ungünstigster Fall!) beidseitig unendlich langer Leiter: $\underline{U}_{B1} = -\underline{U}_{B2} = \frac{\underline{U}'_{BQ}}{2\cdot\underline{\gamma}}$ mit $\underline{I}_{B1} = \frac{-\underline{U}_{B1}}{\underline{Z}_W}$ und $\underline{I}_{B2} = \frac{\underline{U}_{B2}}{\underline{Z}_W}$ beidseitig geerdeter Leiter: $\underline{I}_{B1} = \underline{I}_{B2} = -\underline{I}_{BQ} = -\frac{\underline{U}'_{BQ}}{\underline{\gamma}\cdot\underline{Z}_W}$ mit $\underline{U}_{B1} = \underline{U}_{B2} = 0$

8 Stabilität

8.1 Statische Stabilität

Leistungsabgabe des Generators: $p(\vartheta) = 3 \cdot \frac{e' \cdot u_N}{X} \cdot \sin(\vartheta)$

Kriterium für stabilen Generatorbetrieb:

 $\frac{dp(\vartheta)}{d\vartheta}\Big|_{\vartheta=\vartheta_0} > 0 \qquad \text{stationärer Zustand } \vartheta_0$

Turbogenerator: $\frac{dp(\vartheta)}{d\vartheta}\Big|_{\vartheta=\vartheta_0} = 3 \cdot \frac{e' \cdot u_N}{X} \cdot \cos(\vartheta_0) > 0$ für $\vartheta_0 < 90^\circ$ erfüllt

Verbesserung der statischen Stabilität:

- $\bullet\,$ enge elektrische Kopplung der Synchrongeneratoren mit dem Netz, d.h. kleine Reaktanzen X
- hohe Spannungsebene als Anschlussebene des Generators, d.h. hohes u_N
- übererregte Fahrweise, d.h. hohe transiente Polrad
spannung e^{\prime}
- kleine Polradwinkel ϑ_0
- schnelles Nachregeln der Generatorspannung nach Spannungseinbrüchen

8.2 Transiente Stabilität

Kurzschlüsse sind Großstörungen, welche die Läufer der Generatoren beschleunigen lassen und so zu unzulässig großen Auslenkungen der Polradwinkel führen können. Eine Fehlerklärung des Kurzschlusses kann die beschleunigten Läufer wieder abbremsen.

Umrechnung von Reaktanzen in p.u.: $x = \frac{X}{X_B} = \frac{S_B}{U_B^2} \cdot X$ e' und ϑ'_0 : $\underline{I} = const$, \underline{U} , \underline{E}' , ϑ_0 ; dann X'_d statt X_d stationärer Polradwinkel: $\frac{P_n}{S_B} = \frac{e \cdot u}{x_d} \cdot \sin(\vartheta_0) \Leftrightarrow \vartheta_0 = \arcsin\left(\frac{P_n \cdot x_d}{S_B \cdot e \cdot u}\right)$

Abweichung Polradwinkel generatornaher Kurzschluss: $\Delta \vartheta = \int \int \frac{\omega \cdot P_T}{T_A \cdot S_n} dt dt = \frac{1}{2} \cdot t^2 \cdot \frac{2\pi f_o \cdot P_T}{T_A \cdot S_n}$

Leistungsabgabe vor dem Kurzschluss: $P = S_B \cdot \frac{e'}{x'_{vorher}} \cdot \sin(\vartheta')$ mit Koppelreaktanz x'_{vorher} zum Netz

Leistungsabgabe während des Kurzschlusses: P = 0 da keine Wirkleistung übertragbar

Leistungsabgabe nach dem Kurzschluss: $P = S_B \cdot \frac{e'}{x'_{nachher}} \cdot \sin(\vartheta')$

stabiler Betrieb: Beschleunigungsenergie = Bremsenergie (Fläche A_1 = Fläche A_2)

$$\hat{P}_{nachher} \cdot \sin(\pi - \vartheta'_{krit}) = P_T \Leftrightarrow \vartheta'_{krit} = \pi - \arcsin\left(\frac{P_T}{\hat{P}_{nachher}}\right)$$

maximale Fehlerklärungszeit:

$$\begin{split} P_T \cdot \left(\vartheta'_f - \vartheta'_0\right) &= \int_{\vartheta'_f}^{\vartheta_{krit}} \left(\hat{P}_{nachher} \cdot \sin\left(\vartheta'\right) - P_T\right) \, d\vartheta' = \hat{P}_{nachher} \cdot \left(\cos(\vartheta'_f) - \cos(\vartheta'_{krit})\right) - P_T \cdot \left(\vartheta'_{krit} - \vartheta'_f\right) \\ \Leftrightarrow \vartheta'_f &= \arccos\left(\frac{P_T \cdot \left(\vartheta'_{krit} - \vartheta'_0\right) + \hat{P}_{nachher} \cdot \cos\left(\vartheta'_{krit}\right)}{\hat{P}_{nachher}}\right) \quad \text{und } \vartheta'_f = \vartheta'_0 + \Delta\vartheta \quad \boxed{\text{s. Skript, S. 248, Bild 8.6}} \end{split}$$

generatorferner Kurzschluss: auch während des Kurzschlusses Leistungsabgabe des Generators, Beschleunigungsenergie geringer als beim generatornahen Kurzschluss, Gefahr der Instabilität geringer

Verbesserung der transienten Stabilität: (zusätzlich zu den Maßnahmen für bessere statische Stabilität)

- schnelle Fehlerklärung
- schnelle Verringerung der mechanischen Antriebsleistung p_A , insbesondere bei generatornahem Kurzschluss
- Fehlerklärung durch Kurzunterbrechung, d.h. kleines X_{FK}

9 Sonstiges

 $\mu_0 = 1.257 \cdot 10^{-3} \, \text{Vs/Akm}$

 $\varepsilon_0 = 8{,}854\cdot10^{-9}\,\mathrm{As}\!/\!\mathrm{Vkm}$

Netz: $X_N = c \cdot \frac{U_n^2}{S_k'}$

Wirkleistungsfluss: $P_{AB} = \frac{U_A \cdot U_B}{X_{ges}} \cdot \sin(\vartheta_A - \vartheta_B)$

Bahnstrom: $U_{verk} = 2 \cdot U_{phase}$

Übersetzung Transformator: $S = U \cdot I = \frac{U^2}{X}$, nun U kleiner, dann auch X kleiner, damit S konstant bleibt

Leistung: $\frac{P}{S} = \cos(\varphi)$ $\frac{Q}{S} = \sin(\varphi)$ $\frac{Q}{P} = \tan(\varphi)$

Verbraucher: mit $\underline{Z}_V = R_V || j \cdot X_V$ $R_V = \frac{U_{ph}^2}{P_{V,ph}} = \frac{3 \cdot U_{ph}^2}{P_{V,ges}} = \frac{U_{verk}^2}{3 \cdot P_{V,ph}} = \frac{U_{verk}^2}{P_{V,ges}}$ $X_V = \frac{U_{ph}^2}{Q_{V,ph}} = \frac{3 \cdot U_{ph}^2}{Q_{V,ges}} = \frac{U_{verk}^2}{3 \cdot Q_{V,ph}} = \frac{U_{verk}^2}{Q_{V,ges}}$

Leistungsanpassung: maximale Leistung bei $R = \frac{1}{\omega \cdot C}$ (wenn R und C parallel)